
Immerse Metric Space Homework
(Exercises 1-21)

1. In Rn, define d(x, y) = |x1− y1|+ . . . + |xn− yn|. Show that d is a metric that induces
the usual topology. Sketch the basis elements when n = 2.

Solution: Steps (a) through (d) show that d(x, y) is a metric.

(a) We want to show that the distance between any two points is greater than or equal
to zero. We know that each |xi − yi| is greater than or equal to 0 by the definition of
absolute value. So the sum d(x, y) = |x1− y1|+ . . . + |xn− yn| is greater than or equal
to 0.

(b) Next we want to show that d(x, y) = 0 ⇐⇒ x = y.

⇒ Suppose that d(x, y) = |x1− y1|+ . . . + |xn− yn| = 0; then each |xi− yi| = 0 for all
i = 1 . . . n. So xi − yi = 0 and xi = yi for all i = 1 . . . n.

⇐ Suppose that y = x. Then for d(x, y) = |x1− y1|+ . . . + |xn− yn| we can plug xi in
for yi, and we get d(x, y) = |x1 − x1|+ . . . + |xn − xn| = 0.

(c) Now we want to show that d(x, y) = d(y, x).

Assume d(x, y) 6= d(y, x). Let mi = xi−yi for all i = 1, . . . , n. Then |x1−y1|+. . .+|xn+
yn| 6= |y1−x1|+ . . .+ |yn−xn|, implying that |m1|+ . . .+ |mn| 6= |−m1|+ . . .+ |−mn|.
We have reached a contradiction, since by definition |m| = |−m|. Therefore, d(x, y) =
d(y, x).

(d) Finally we want to show that the triangle inequality holds for d. We know that
|xi − yi| = |xi − zi + zi − yi| ≤ |xi − zi|+ |zi − yi|. Since this holds for all i = 1, . . . , n
we know that d(x, y) =

∑n
i=1 |xi − yi| ≤

∑n
i=1 |xi − zi| + |zi − yi| = d(x, z) + d(z, y).

Thus the triangle inequality holds for d.

Now to show that d(x, y) induces the usual topology, let δ be the usual metric, let
Bδ(x, ε) be given, and let y be in the open ball centered at x of radius ε√

n
, that is

y ∈ Bd(x, ε√
n
). Then we know that |x1− y1|+ . . . + |xn + yn| < ε√

n
, which implies that

each individual |xi − yi| < ε√
n

for all i = 1, . . . , n. Therefore:

√√√√
n∑

i=1

(xi − yi)2 <

√√√√
n∑

i=1

ε2

n
= ε

Hence,y ∈ Bδ(x, ε), which means that y is in an open ball in the topology induced by
d(x, y), implies that y is in an open ball in usual topology. Now if we let Bd(x, ε) be
given, and let y ∈ Bδ(x, ( ε

n
)2), which implies that (x1 − y1)

2 + . . . + (xn − yn)2 < ( ε
n
)2.

Then we know that each |xi−yi|2 < ( ε
n
)2 for all i = 1, . . . , n, implying that |xi−yi| < ε

n

for all i = 1, . . . , n. Therefore:
n∑

i=1

|xi − yi| < ε
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Thus, y ∈ Bd(x, ε). Thus, if y is in an open ball in the usual topology, then y is in an
open ball in the topology induced by d(x, y).

2. In Rn, define d(x, y) = (
n∑

i=1

|xi − yi|p)1/p. Assume that d is a metric, and show that d

induces the usual topology.

We want to show that τd ∼ τEuc where τd is the topology induced by the metric d
and τEuc is the topology induced by the usual Euclidean metric. We know by exercise
(1) that τEuc ∼ τabs where τabs is the topology induced by the absolute value metric
as defined in exercise (1). So we will prove that τd ∼ τabs. Let y ∈ Bd(x, ε). Then

(
n∑

i=1

|xi − yi|p)1/p < ε. So
n∑

i=1

|xi − yi|p < εp. So |xi − yi|p < εp ∀i = 1, ..., n. Then

|xi − yi| < ε ∀i = 1, ..., n.

So
n∑

i=1

|xi − yi| < nε. So y ∈ Babs(x, nε). Now let z ∈ Babs(x, ε).

So
n∑

i=1

|xi − zi| < ε. Then (
n∑

i=1

|xi − zi|)p < εp.

We know
n∑

i=1

|xi − zi|p ≤ (
n∑

i=1

|xi − zi|)p. So (
n∑

i=1

|xi − zi|p)1/p ≤
n∑

i=1

|xi − zi| < ε. So

z ∈ Bd(x, ε). Hence τd ∼ τabs ∼ τEuc as desired.

3. Show that the topology induced by a metric d is the coarsest topology relative to which
the metric is continuous

Proof. ( First, show If d is continuous with metric τ , then τd ⊆ τ .)

Assume that d is continuous with respect to τ . Let B be an open set in τd such that
B = B(x0, ε) for some x0 ∈ X.
Show B is open in (X, τ).
d : X ×X → <+ is continuous wrt τ .
Define d′ : X → <+ to be d′(x) = d(x, x0).
So d′ = d|(X×x0), so d′ is continuous wrt to τ .
Note that [0, ε) is open in <+. Then B = B(x0, ε) = d′−1([0, ε]) ⊆ (X, τ).

( Next show τd makes d continuous.)
Let (a, b) ∈ <+.
Show d−1((a, b)) is open in τd.
Let U = d−1((a, b)).
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Let x ∈ d−1((a, b)), so x is a point (x, y).
d(x, y) ∈ (a, b).
Let ε = 1

2
min{|a− d(x, y)|, |b− d(x, y)|}.

Let B1 = B(x, ε) ⊆ Xand B2 = B(y, ε) ⊆ X.
Show B1 ×B2 ⊂ U.
Let z ∈ B1 ×B2, where z = (x′, y′).
Show a < d(x′, y′) < b.
d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′).
Since d(x′, x) < ε ≤ 1

2
(|b− d(x, y)|)

and d(y, y′) < ε ≤ 1
2
(|b− d(x, y)|), d(x′, y′) < b.

d(x′, y′) ≥ d(x, y)− (d(x′, x) + d(y′, y)) > a, by the inverse triangle-inequality.
Thus z ∈ U , so U = d−1((a, b)) is open.
Therefore, d is continuous on τd.

4. Let d be a metric and let d′(x, y) =
d(x, y)

1 + d(x, y)
. Prove that d′ is a bounded metric.

Claim: If α ≤ β and α, β > 0, then
α

1 + α
≤ β

1 + β
.

Proof. (Proof of claim) Let α ≤ β and α, β > 0. Adding αβ to both sides we obtain,
α + αβ ≤ β + αβ. Now factoring out both sides, we get α(1 + β) ≤ β(1 + α). Finally,

since α, β > 0, we can divide both sides and we are left with,
α

1 + α
≤ β

1 + β
.

Proof. (Proof that d′ is a metric) Let p, q, r ∈ X.

1. d′(p, q) =
d(p, q)

1 + d(p, q)
≥ 0 since d(p, q) ≥ 0 and 1 + d(p, q) > 0. Therefore,

d′(p, q) ≥ 0.

2. We know that d′(p, q) =
d(p, q)

1 + d(p, q)
= 0 if and only if d(p, q) = 0. Since d is a

metric, d(p, q) = 0 if and only if p = q. Therefore, d′(p, q) = 0 if and only if p = q.

3. Since d is a metric, d(p, q) = d(q, p). So, d′(p, q) =
d(p, q)

1 + d(p, q)
=

d(q, p)

1 + d(q, p)
= d′(q, p)

Therefore, d′(p, q) = d′(q, p).
4. Since d is a metric, d(p, q) ≤ d(p, r) + d(r, q). So by the above Lemma,

d′(p, q) =
d(p, q)

1 + d(p, q)
≤ d(p, r) + d(r, q)

1 + d(p, r) + d(r, q)
=

d(p, r)

1 + d(p, r) + d(r, q)
+

d(r, q)

1 + d(p, r) + d(r, q)
.

Since d is a metric, d(p, r), d(r, q) ≥ 0. Therefore
d(p, r)

1 + d(p, r) + d(r, q)
≤ d′(p, r) and

d(r, q)

1 + d(p, r) + d(r, q)
≤ d′(r, q).
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Thus, d′(p, q) ≤ d(p, r)

1 + d(p, r) + d(r, q)
+

d(r, q)

1 + d(p, r) + d(r, q)
≤ d′(p, r) + d′(r, q). There-

fore, d′(p, q) ≤ d′(p, r) + d′(r, q).
Thus d′ is a metric.

Proof. (Proof that d′ is bounded) Let p, q ∈ X. Let M = 1. Since d is a metric,
d(p, q) ≥ 0. Therefore, d(p, q) ≥ 0, 1 + d(p, q) > 0 and d(p, q) < 1 + d(p, q). Hence,

d′(p, q) =
d(p, q)

1 + d(p, q)
< 1 = M . Therefore, d′ is bounded by M .

5. Let d be a metric. Show that d̄(x, y) = min{d(x, y), 1} induces the same topology as
d.

Proof. Let τd and τd̄ be the topologies induced by d and d̄ respectively. To show that
d̄ induces the same topology as d, we will show containment of open sets in τd in τd̄,
and vice-versa.

Let U ∈ τd and fix ρ ∈ U . Then there exists r > 0 such that Bd(ρ, r) ⊆ U , by definition
of an open set. Let r′ = min{r, 1}. Then Bd̄(ρ, r′) = Bd(ρ, r′) ⊆ Bd(ρ, r) ⊆ U . So
U ∈ τd̄.

Now let U ∈ τd̄. Fix ρ ∈ U . Then there exists r′ > 0 such that Bd̄(ρ, r′) ⊆ U . We may
suppose that r′ ≤ 1 (else Bd̄(ρ, r′) = X ⊆ U , which implies that U = X, open in τd).
So Bd(ρ, r′) = Bd̄(ρ, r′) ⊆ U and U ∈ τd.

We have shown double containment of open sets in τd and τd̄, therefore we have that
d̄(x, y) = min{d(x, y), 1} induces the same topology as d.

6. For x and y in Rn, let x · y =
∑

xiyi and ‖x‖ =
√

x · x. Show that the Euclidean
metric d on Rn is a metric by completing the following:.

(a) Show that (x · y) + (x · z) = x · (y + z).

PROOF.

(x · y) + (x · z) =
∑

xiyi +
∑

xizi

=
∑

(xiyi + xizi)

=
∑

[xi(yi + zi)]

= x · (y + z)

(b) We need to show |−→x · −→y | ≤ ‖x‖‖y‖∀−→x ,−→y ∈ Rn
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Proof. We note that

0 ≤ ‖−→x − t−→y ‖2

= |−→x − t−→y | · |−→x − t−→y |
= −→x · |−→x − t−→y | − t−→y |−→x − t−→y |
= −→x · −→x − t−→x · −→y − t−→y · −→y + t2−→y −→y
= ‖−→x ‖2 − 2t−→x · −→y + t2‖y‖2

If −→y = 0, we have shown the inequality. Assume that y 6= 0. Let t =
−→x ·−→y
‖−→y ‖2 . Then

we have from above

0 ≤ ‖x‖2 − 2
−→x · −→y
‖−→y ‖2

−→x · −→y +

(−→x · −→y
‖−→y ‖2

)2

‖y‖2

≤ ‖x‖2 − 2
(−→x · −→y )2

‖−→y ‖2
+

(−→x · −→y )2

‖−→y ‖2

= ‖x‖2 − (−→x · −→y )2

‖−→y ‖2

Then, we have
(−→x · −→y )2 ≤ ‖−→x ‖2‖−→y ‖2.

Thus taking the square root of both sides we have,

(−→x · −→y ) ≤ ‖−→x ‖‖−→y ‖

(c) Show that ‖x + y‖ ≤ ‖x‖+ ‖y‖.

PROOF.

‖x + y‖ =
√

(x + y) · (x + y)

‖x + y‖2 =
√

(x + y) · (x + y)
2

=
n∑

i=1

(xi + yi)
2

=
n∑

i=1

(x2
i + 2xiyi + y2

i )

=
n∑

i=1

x2
i +

n∑
i=1

2xiyi +
n∑

i=1

y2
i

= ‖x‖2 + 2
n∑

i=1

xiyi + ‖y‖2

≤ ‖x‖2 + 2|x · y|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 by part (c)

= (‖x‖+ ‖y‖)2
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Taking the squareroot of both sides we achieve the desired result.

(d) Verify that d(x, y) = ‖x− y‖ is a metric.

PROOF.
To verify that d is a metric it must satisfy the following four properties.

i. d(x, y) ≥ 0

Proof.

d(x, y) = ‖x− y‖

=

√√√√
n∑

i=1

(xi − yi)2

≥ 0

ii. d(x, y) = 0 ⇔ x = y

Proof.

d(x, y) = 0

⇔ ‖x− y‖ = 0

⇔
√

(x− y) · (x− y) = 0

⇔
√√√√

n∑
i=1

(xi − yi)2 = 0

⇔ xi = yi ∀i

iii. d(x, y) = d(y, x)

Proof.

d(x, y) = ‖x− y‖

=

√√√√
n∑

i=1

(xi − yi)2

=

√√√√
n∑

i=1

(yi − xi)2

= ‖y − x‖
= d(y, x)
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iv. d(x, y) ≤ d(x, r) + d(r, y)

Proof.

d(x, y) = ‖x− y‖
= ‖(x− r) + (r − y)‖
≤ ‖x− r‖+ ‖r − y‖ (by part (c))

= d(x, r) + d(r, y)

By verifying these properties we have proven that the Euclidean metric d on Rn

is a metric.

7. Prove the continuity of the algebraic operations of the real line.

Lemma: Let f, g : X → Y be continuous functions. Then the function h : X ×X →
Y × Y defined by h(x, y) = (f(x), g(y)) is continuous.

From the lecture notes theorem part (i) it is sufficient to prove that the function
F : X × X → Y defined by F (x, y) = f(x) is continuous (and similarly the function
G : X ×X → Y defined by G(x, y) = g(y) is continuous). Let U be an open set in Y .
Then f−1(U) is open in X. But F−1(U) = f−1(U)×X. Since f−1(U) and X are both
open in X, f−1(U)×X is open in X ×X, so F is continuous.

Proof.

(a) Addition: Let (a, b) be a basis element of R. Let f : R× R→ R be the addition
function. Then f−1[(a, b)] = {(x, y) ∈ R× R |x + y ∈ (a, b)}.
Fix any (c, d) ∈ f−1[(a, b)] and let ε = min{(c + d− a), (b− (c + d))}. We want to
show that there is an open set containing (c, d) that is contained within f−1[(a, b)].
Let d2

1 be the taxicab metric, which we know induces the usual topology on R×R.
Then Bd2

1
((c, d), ε/2) is an open set that that contains the point (c, d).

Let (w, z) ∈ Bd2
1
((c, d), ε/2). Then d2

1((w, z), (c, d)) = |w−c|+ |z−d| < ε/2, which
implies that both |w − c| and |z − d| are less than ε/2. So w + z < ε + c + d ≤
b − (c + d) + c + d = b and w + z > c + d − ε ≥ c + d − (c + d − a) = a.
So w + z ∈ (a, b), which implies that Bd2

1
((c, d), ε/2) ⊆ f−1[(a, b)]. Therefore

f−1[(a, b)] is open, which implies that f is continuous.

(b) Subtraction: It is enough to show that the additive inverse map g : R→ R defined
by g(x) = −x is continuous. Then the subtraction map s : R × R → R can be
written as s(x, y) = f(i(x), g(y)) where i(x) is the identity map (continuous by
lecture theorem part (b)) and f(x, y) is the addition map which we have shown to
be continuous. Then by our lemma s is the composition of continuous functions
is itself continuous.
Fix any x ∈ R and any ε > 0. If |x− y| < ε, then |g(x)− g(y)| = | − x− (−y)| =
|(−1)(x−y)| = |x−y| < ε. So by our ε−δ definition of continuity g is continuous.
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(c) Multiplication Fix any ε > 0 and any point (x, y) ∈ R × R. Then set δ =
−m+

√
m2+4ε

2
> 0, where m = max{|x|, |y|}. Consider any (xn, yn) ∈ Bd2

1
((x, y), δ).

Then

|x− xn|+ |y − yn| <δ

|x− xn|2 + 2|x− xn||y − yn|+ |y − yn|2 <δ2

|x− xn||y − yn| <δ2.

From our definition of m we know

|y||x− xn|+ |x||y − yn| ≤ m(|x− xn|+ |y − yn|) < mδ.

We note that

δ2 + mδ =

(
m2

4
− m

√
m2 + 4ε

2
+

m2 + 4ε

4

)
+

(
−m2

2
+

m
√

m2 + 4ε

2

)
= ε.

Combining these results and using the triangle inequality we have

|y||x− xn|+ |x||y − yn|+ |x− xn||y − yn| <mδ + δ2 = ε

|yx− yxn|+ |y − yn|(|x− 0|+ |x− xn|) <ε

|yx− yxn|+ |y − yn|(|xn − 0|) <ε

|yx− yxn|+ |yxn − ynxn| <ε

|yx− ynxn| <ε.

Therefore, by our ε − δ definition of continuity multiplication of real numbers is
continuous.

(d) Division It is enough to show that the multiplicative inverse map r : R/{0} → R
defined by r(x) = 1/x is continuous. Then the division map v : R × R → R can
be written as v(x, y) = m(i(x), r(y)) where i(x) is the identity map (continuous
by lecture theorem part (b)) and m(x, y) is the multiplication map which we have
shown to be continuous. Then by our lemma v is the composition of continuous
functions is itself continuous.
Fix any ε > 0 and any x 6= 0. Let δ = ε|x|2

1+ε|x| > 0. Consider any xn ∈ B(x, δ).
Then

|x− xn| <δ =
ε|x|2

1 + ε|x|
(1 + ε|x|)|x− xn| <ε|x|2

|x− xn|+ ε|x||x− xn| <ε|x|2
|x− xn| <ε|x|(|x| − |x− xn|).
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Applying the triangle inequality we have

|x− xn| <ε|x|(|x− xn|+ |xn − 0| − |x− xn|)
|x− xn| <ε|x|(|xn|)
|x− xn|
|x||xn| <ε

∣∣∣∣
1

xn

− 1

x

∣∣∣∣ <ε.

Therefore, by our ε− δ definition of continuity taking reciprocals of real numbers
is continuous.

8. Given f, g : X → R are continuous, prove that f + g, fg, f − g, and f/g (provided g is
nowhere zero) are all continuous.

Notice that these are all functions of the form h(f(x), g(x)). For example, given
h(a, b) = a + b, then f(x) + g(x) = h(f(x), g(x)). If we can show that, given con-
tinuous h : R2 → R, that h(f(x), g(x)) is continuous, then we would be done.

Let p : X → R2 be defined as p(x) = (f(x), g(x)). Then we have that h(f(x), g(x)) is
just h ◦ p(x). Since we know compositions of continuous functions are continuous, we
just need to show that p is continuous. (See the lemma in problem 7 for the proof of
this claim.)

9. In Rn (and metric spaces, in general), xn → x means that given ε > 0 there is a
finite integer N such that d(xn, x) < ε for all n > N . Show that this agrees with the
definition of convergence given for topological spaces.

Problem rephrased:
In topology:
xn → x ⇔ ∀ U neighborhood of x ∃ N ∈ N such that n > N ⇒ xn ∈ U
In Rd: xn → x ⇔ ∀ ε > 0∃ N ∈ N such that n > N ⇒ d(xn, x) < ε
Show these statements are equivalent.

Proof: (⇐) Let xn → x in Rd. Let U be a neighborhood of x.
Then ∃ ε > 0 such that B(x, ε) ⊆ U
So ∃ N ∈ N such that for n > N , d(xn, x) < ε which implies xn ∈ B(x, ε)
∴ xn ∈ U .
(⇒) Let xn → x (in topology). Given ε > 0, B(x, ε) (which is a neighborhood of x) ∃
N ∈ N such that for n > N , xn ∈ B(x, ε) which implies d(xn, x) < ε.¤

10. (The solution to 10 was not typed up due to a miscommunication)

11. (The solution to 11 was not typed up, because of its similarity to 7)
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12. Using the closed set formulation of continuity show that the sets {(x, y)|xy = 1},
{(x, y)|x2 + y2 = 1}, and {(x, y)|x2 + y2 ≤ 1} are closed in R2.

Proof. Recall that for f : X → Y a continuous function, f−1(C) is closed in X when-
ever C is closed in Y . Let f : R2 → R be defined by f(x, y) = xy. By exercise
7, f is continuous. {1} is a closed set in R. Then f−1({1}) = {(x, y)|xy = 1} is
closed in R2. Similarly, let g : R2 → R be defined by g(x, y) = x2 + y2. Then
g−1({1}) = {(x, y)|x2 + y2 = 1} is closed in R2. Since (−∞, 1] is a closed set,
g−1((−∞, 1]) = {(x, y)|x2 + y2 ≤ 1} is closed in R2.

13. Let fn : R → R be defined by fn(x) = 1
n3(x−(1/n))2+1

and let f(x) = 0. Show that

fn(x) → f(x) for each x, but fn doesn’t converge uniformly to f .

Pointwise Convergence:

Let ε > 0 and x ∈ R be given. We want to show that fn(x) converges pointwise to
zero. Note that if x = 0, then fn(0) = 1

n+1
, which clearly converges to 0 as n → ∞.

When x 6= 0, I claim that if N =

√
1
ε
−1

x
, then for all n > N , fn(x) < ε.

Proof of claim:

n >

√
1
ε
− 1

x
(nx− 1)2 > 1/ε− 1

n2x2 − 2nx + 1 > 1/ε− 1

n3x2 − 2n2x + n > 1/ε− 1 (since n ≥ 1)

n3(x2 − (2x/n) + (1/n2)) > 1/ε− 1

n3(x− (1/n))2 > 1/ε− 1
1

n3(x− (1/n))2 + 1
< ε

fn(x) < ε.

Thus, we can make fn(x) < ε, so we have pointwise convergence to 0.

Uniform Convergence:

We see that fn(1/n) = 1 for all n, so for 0 < ε < 1, there’s no N such that for all
x ∈ R and all n > N, fn(x) < ε. Thus, fn doesn’t converge uniformly to 0.

14. (a) If {sn} is a bounded sequence of real numbers and sn ≤ sn+1 for each n, then {sn}
converges.

Let T be the least upper bound of {sn}. Since {sn} is a bounded sequence, we know
T < ∞. I claim that the sn converge to T . Take any ball B of radius ε centered around
T . B must contain some sN for some N , because otherwise T−ε would be upper bound
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of the sn, contradicting the leastness of T . Since it contains sN , it also contains sn for
all n ≥ N , since sn are monotonically increasing. Therefore, sn converge to T .

(b) Let {an} be a sequence of real numbers. Define sn =
∑n

i=1 ai. If sn → s, we say
the infinite series

∑∞
i=1 ai converges to s. Show that if

∑
ai converges to s and

∑
bi

converges to t, then
∑

cai + bi converges to cs + t.

Take some ε > 0. Note that if c = 0, then the result is obvious. Otherwise, if
∑

ai → s,
then there exists an Na such that for n ≥ Na, |

∑n
i=1 ai − s| < ε

2|c| . Likewise, there exists

an Nb such that for n ≥ Nb, |
∑n

i=1 bi − t| < ε/2. Let N = max{Na, Nb}. Therefore,
we see that for n ≥ N ,

∣∣∣∣∣
n∑

i=1

(cai + bi)− (cs + t)

∣∣∣∣∣ =

∣∣∣∣∣c
(

n∑
i=1

ai − s

)
+

(
n∑

i=1

bi − t

)∣∣∣∣∣

< |c|
(

ε

2|c|
)

+
ε

2
= ε

Therefore,
∑

cai + bi converges to cs + t.

(c) (Comparison test) If |ai| ≤ bi for each i and
∑

bi converges then
∑

ai converges.

Let ci =

{
ai if ai ≥ 0

0 otherwise
, and let di =

{
ai if ai ≤ 0

0 otherwise
. Suppose

∑
bi → b. Then we

see that both
∑

ci and
∑

di are bounded by b, and are strictly increasing. Therefore,
by part (a), we have both

∑
ci converges, and

∑
di converges.

Suppose
∑

ci → c and
∑

di → d. I claim that
∑

ai → c− d. Take some ε > 0. There
exists an Nc such that for n ≥ Nc, |

∑n
i=1 ci − c| < ε/2. Likewise, there exists an Nd

such that for n ≥ Nd, |
∑n

i=1 di − d| < ε/2. Let N = max{Na, Nb} . Then, we see that
for n ≥ N , ∣∣∣∣∣

n∑
i=1

ai − (c− d)

∣∣∣∣∣ =

∣∣∣∣∣

(
n∑

i=1

ci − c

)
+

(
n∑

i=1

di − d

)∣∣∣∣∣ .

for γ ≥ Nc and δ ≥ Nd. Therefore, we have
∣∣∣∣∣

n∑
i=1

ai − (c− d)

∣∣∣∣∣ <
ε

2
+

ε

2

= ε

Therefore, the ai converge.

(d) (Weierstrass M-test) Given fn : X → R, and let sn(x) =
∑n

i=1 fi(x). If fi(x) ≤ bi,
for all x and i, where

∑
bi converges, then sn(x) converges uniformly to a function

s(x).
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Let s(x) =
∑∞

i=1 fi(x) pointwise, which we know converges for each individual x be-
cause of part (c). We want to show this convergence is uniform.

Suppose it were not. Then there exists an ε > 0 such that for any n, there exists an x
such that ∣∣∣∣∣

n∑
i=1

fi(x)− s(x)

∣∣∣∣∣ ≥ ε.

We know that since
∑

bi converges, it is Cauchy. So, there exists an N such that for
n, k ≥ N ,

|
k∑

i=n

bi| < ε

for the same ε as above.

For this value of N , there exists an x0 such that

∣∣∣∣∣
N∑

i=1

fi(x0)− s(x0)

∣∣∣∣∣ ≥ ε.

We know that
∑n

i=1 fi(x0) → s(x0). Therefore, there exists a K > N , such that for
k ≥ K, we have ∣∣∣∣∣s(x0)−

k∑
i=1

fi(x0)

∣∣∣∣∣ < ε/2

Therefore, combining the last two inequalities with the triangle inequality, we get

∣∣∣∣∣
N∑

i=1

fi(x0)− s(x0)

∣∣∣∣∣−
∣∣∣∣∣s(x0)−

k∑
i=1

fi(x0)

∣∣∣∣∣ ≥ ε− ε/2

∣∣∣∣∣
N∑

i=1

fi(x0)− s(x0) + s(x0)−
k∑

i=1

fi(x0)

∣∣∣∣∣ ≥ ε/2

∣∣∣∣∣
k∑

i=N+1

fi(x0)

∣∣∣∣∣ ≥ ε/2

However, we see that (using the triangle inequality again)

∣∣∣∣∣
k∑

i=N+1

fi(x0)

∣∣∣∣∣ ≤
k∑

i=N+1

|fi(x0)|

≤
k∑

i=N+1

bi

< ε/2

This is a contradiction. Therefore, the convergence is in fact uniform.
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15. Let f be a uniformly continuous real-valued function on a bounded subset E of the
real line. Show that f is bounded on E.

Proof.

Since E is bounded, E ⊂ [−M,M ] for some M ≥ 0. Let ε = 1. Since f is uniformly
continuous, choose δ > 0 such that |f(x) − f(y)| < ε = 1 whenever |x − y| < δ. Let
B = {B(x, δ

2
)|x ∈ [−M, M ]} Since [−M,M ] is compact and B is an open cover of

[−M, M ], there exists finite subcover B(x1,
δ
2
), . . . , B(xn, δ

2
). Let x, y ∈ E ∩ B(xi,

δ
2
)

for some i = 1, · · · , n. Then |x − y| < δ which implies |f(x) − f(y)| < 1. Hence f is
bounded on each E ∩ B(xi,

δ
2
), say by Ni. Since B(x1,

δ
2
), . . . , B(xn, δ

2
) covers E, f is

bounded on E by max{Ni} for i = 1, . . . , n.

Show that f need not be bounded if E is not bounded.

Example:

Let E = R and let f(x) = x. Then f is uniformly continuous, since we are given ε > 0,
and letting δ = ε, |x− y| < δ ⇒ |x− y| < ε ⇒ |f(x)− f(y)| < ε. Finally, f is clearly
not bounded on R, since given any M > 0, f(M + 1) = M + 1 > M .

16. Consider the function f defined by f(x) =





0 x 6∈ Q
1/n x = m

n
(m,n rel.prime, n > 0)

1 x = 0.
Prove that f is continuous at every irrational and discontinuous at every rational.

Proof. Let x0 ∈ Q − {0} such that x0 = m0

n0
where m0, n0 are relatively prime and

n0 > 0. Fix ε < 1
n0

. For any δ > 0, there is some x ∈ R−Q such that x ∈ (x0−δ, x0+δ).

So | x0 − x |< δ but | f(x) − f(x0) |=| 0 − 1
n0
|= 1

n0
> ε. So f is discontinuous at

x0 ∈ Q− {0}.

Now consider the case where x = 0. Then for ε < 1 and any δ > 0, there is some
x ∈ R−Q such that x ∈ (−δ, δ). Again | 0−x |< δ but | f(x)−f(0) |=| 0−1 |= 1 > ε.
We have f discontinuous at 0, so f is discontinuous for all x ∈ Q.

Now let x0 ∈ R − Q and fix ε > 0. Let N be the smallest N ∈ N such that
1
N

< ε. For each n < N define qn = m
n

such that m is the smallest integer such
that m

n
> x0 and m,n relatively prime. Also define q′n = m

n
such that m is the largest

integer such that m
n

< x0 and m,n relatively prime. Consider the finite set of rationals
A = {qn | n < N} ∪ {q′n | n < N} and let δ = min{d(a, x0) | a ∈ A}.
Then | x−x0 |< δ means | f(x)−f(x0) |= 0 < ε if x ∈ R−Q. And if x ∈ Q, then x = m′

n′
where m′, n′ are relatively prime and n′ ≥ N , so | f(x)−f(x0) |=| f(x) |= 1

n′ ≤ 1
N

< ε.
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Therefore f continuous at every irrational number.

17. Let f : X −→ (R) be a continuous function on a metric space. Show that the zero set
Zf = {x|f(x) = 0} is closed.

The set {0} is closed in R. Therefore its continuous preimage

Zf = {x|f(x) = 0}

is closed.

18. If A is a nonempty subset of a metric space X, define the distance from x to A to
be δA(x) = glby∈Ad(x, y). Prove: (a) δA(x) = 0 ⇔ x ∈ A, and (b) δA is uniformly
continuous.

(a) We have that x ∈ A if and only if every open set containing x contains a point
of A. But this is true if and only if every open ball about x contains a point of
A. By the definition of an ε-ball, this is true if and only if for every ε > 0, there
exists y ∈ A such that d(x, y) < ε. But this is so if and only if glby∈Ad(x, y) = 0,
which is equivalent to δA(x).

(b) Let ε > 0 be given. Suppose x, x′ ∈ X with d(x, x′) < ε; we will show that
|δA(x)− δA(x′)| < ε, establishing uniform continuity.

Suppose to the contrary that |δA(x) − δA(x′)| > ε, and assume without loss of
generality that δA(x′) > δA(x). Then we can write

δA(x′) = δA(x) + ε + γ,

where γ > 0. But since δA(x) is the greatest lower bound of {d(x, z)|z ∈ A}, there
exists a y ∈ A such that d(x, y) < δA(x) + γ. Then by the triangle inequality,

d(x′, y) ≤ d(x′, x) + d(x, y)

< ε + δA(x) + γ

= δA(x′).

But this contradicts that δA(x′) is a lower bound for {d(x′, z)|z ∈ A}.

19. Let A and B be disjoint nonempty closed subsets of a metric space X. Define f : X →
R by

f(x) =
δA(x)

δA(x) + δB(x)

for all x ∈ X.
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(a) Show f is continuous and the range of f lies in [0,1].

Note δA and δB are continuous on X, so δA + δB is as well. Therefore, f = δA

δA+δB

will be continuous on X provided δA + δB 6= 0 on X. But, if there exists some x ∈ X
where δA(x) + δB(x) = 0 then δA(x) = δB(x) = 0 since both of the δ functions are
nonnegative. Thus, by 18 a), x ∈ Ā = A and x ∈ B̄ = B. But this means A and B
are not disjoint, contradicting our assumption that they are. Therefore, δA + δB > 0
on X which implies f is continuous on X.

To show the range property of f , note δA ≥ 0 and δA + δB > 0 on X which implies
f ≥ 0 on X. Also, if x ∈ X

0 ≤ f(x) =
δA(x)

δA(x) + δB(x)
≤ δA(x) + δB(x)

δA(x) + δB(x)
= 1

using the fact that δB is a nonnegative function on X.

(b) Show f(x) = 0 iff x ∈ A and f(x) = 1 iff x ∈ B.

Note f(x) = 0 iff δA(x) = 0 iff x ∈ Ā = A. Also, f(x) = 1 iff δA(x) = δA(x) + δB(x) iff
δB(x) = 0 iff x ∈ B̄ = B.

(c) Show that every closed set A in X is the zero set for some continuous function.

If A = ∅, then choose the function identically 1 on all of X. If A 6= ∅, then pick
δA, which vanishes identically on Ā = A.

(d) Show that there exist disjoint open sets U and V where A ⊆ U and B ⊆ V .

Let f be defined by

f(x) =
δA(x)

δA(x) + δB(x)

on X. Let Û = [0, 1
2
) and V̂ = (1

2
, 1] which are open in [0,1]. Thus, U = f−1(Û) and

V = f−1(V̂ ) are open in X by the continuity of f . Also, A = f−1({0}) ⊆ f−1([0, 1
2
)) =

f−1(Û) = U and B = f−1({1}) ⊆ f−1((1
2
, 1]) = f−1(V̂ ) = V . Finally, because f is a

function, U and V are disjoint.

20. Suppose f, g : X → Y are continuous mappings between metric spaces and E is a
dense subspace of X.

a) Prove f(E) is dense in f(X).

We must show f(E) = f(X). Since f is continuous, we know f(E) ⊆ f(E). So
f(E) = f(X) ⊆ f(E). And f(E) ⊆ f(X) implies f(E) ⊆ f(X) = f(X) since f(X) is
closed in f(X). So f(E) = f(X) and hence f(E) is dense in f(X).
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b) Prove if f(x) = g(x) for all x in E, then f(x) = g(x) for all x in X.

Let y ∈ X − E. We know y ∈ E since y ∈ X. Suppose f(y) 6= g(y). Let d =
d(f(y), g(y)). So B(f(y), d

3
) ∩ B(g(y), d

3
) = ∅. Let g(xn) = f(xn) be sequences such

that xn ∈ E and d(y, xn) < 1
n
. We know these sequences exist since we know f(x) =

g(x) ∀x ∈ E and y ∈ E. Since f is continuous, f(xn) → f(y). So there exists some
N1 ∈ N such that f(xn) ∈ B(f(y), d

3
) ∀n > N1. Likewise, there is some N2 ∈ N

such that g(xn) ∈ B(g(y), d
3
) ∀n > N2. Choose m such that m > N1 and m > N2.

Then f(xm) ∈ B(f(y), d
3
) and g(xm) = f(xm) ∈ B(g(y), d

3
). So f(xm) ∈ B(f(y), d

3
) ∩

B(g(y), d
3
). This is a contradiction, so f(y) = g(y) must hold ∀y ∈ X.

21. Suppose f : R2 → R2 is one-to-one and satisfies d(x, y) = 1 implies that d(f(x), f(y)) =
1. Show that d(x, y) = d(f(x), f(y) for all x, y ∈ R2.

Proof. Fix any point x ∈ R2 and any point y0 ∈ R2 such that d(x, y0) = 1. Then define
points yi for i = 1, 2, 3, 4, 5 by rotating along the circle of radius 1 centered at x by
πi/3 radians from y0. Since all of the triangles formed by the segments connecting the
yi and x are equilateral, the yi are all separated by a distance of 1 unit from yi+1 and
yi−1 (where the subscript addition is mod 6).

Since d(a, b) = 1 implies that d(f(a), f(b)) = 1, the circle of radius 1 centered at x
must map into the circle of radius 1 centered at f(x). In particular, all of the f(yi)
must lie on this circle. Once the location of f(y0) is fixed on this circle, there are only
two points a distance one away from f(y0) that are still on the circle (each point π/3
radians away from y0). Since d(y0, y1) = 1, y1 must map to one of these two points,
and this then determines where each of the remaining yi must map.

Consider the perpendicular bisector of yi and yi+1. There are exactly two points on
the perpendicular bisector that are a distance of 1 unit away from yi and yi+1. One
of these points is x, call the other point z. Then f(z) must be one of the two points
that is exactly 1 unit away from f(yi) and f(yi+1). One of these points is f(x), and
since f is one-to-one the other point must be f(z). Continuing in this manner we see
that f must map any equilateral triangular lattice of points separated by 1 unit onto
a congruent equilateral triangular lattice of points separated by 1 unit, and that this
map is determined by the image of three adjacent points (i.e. any one triangle) of the
lattice.

Now consider any point p on the circle of radius 1 centered at x such that p 6= y0.
Let θ be the angle from y0 to p, measured in the direction of y1. We want to show
that f(p) must be the point on the circle of radius 1 centered at f(x) such that the
angle from f(y0) to f(p) measured in the direction of f(y1) is θ. If we can show this,
then we will know that d(y0, p) = d(f(y0), f(p)). Since x was chosen arbitrarily, y0 was
chosen arbitrarily on the circle of radius 1 centered at x, and p was chosen arbitrarily
among points on this circle not equal to y0, we would know that for all points a, b such
that d(a, b) < 2, d(a, b) = d(f(a), f(b)). To show that d(a, b) = d(f(a), f(b)) for the
case when d(a, b) = r ≥ 2, we can repeat the above lattice creation process on a circle
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of radius r/brc. Because of the arbitrary choice of x and y0, the lattice procedure
shows that d(a, b) = d(f(a), f(b)) whenever d(a, b) is an integer multiple of the original
circle’s radius.

Before we prove our claim about f(p), note that for any two points a, b such that
d(a, b) ≤ 2, we can find a point c such that d(a, c) = d(b, c) = 1. Then d(f(a), f(c)) =
d(f(b), f(c)) = 1, so by the triangle inequality d(f(a), f(b)) ≤ 2.

We know that f(p) must be on the circle of radius 1 centered at f(x). Assume that
the angle from f(y0) to f(p) measured in the direction of f(y1) is NOT θ. We know
that the equilateral triangular lattice of points separated by 1 unit of which p and x
are a part must be mapped onto a congruent equilateral triangular lattice of points
separated by 1 unit. In particular, each point on the ray −→xp that is a distance r ∈ Z>0

from x must be mapped to the point on the ray
−−−−−→
f(x)f(p) a distance r from f(x). So

assume that the angle from f(y0) to f(p) measured in the direction of f(y1) is α 6= θ.
Let β = |α − θ|. Consider the point on −→xp a distance r = d 2

| sin(β/2)|e from x. Call this

point a. Let f(q) be the point such that the angle from f(y0) to f(q) in the direction
of f(y1) is θ, and the distance from f(q) to f(x) is r. Let b be any point on the
equilateral triangular lattice of points separated by 1 unit determined by x and y0 such

that d(a, b) < 2. Then f(a) must be the point on
−−−−−→
f(x)f(p) a distance r from f(x),

which means that f(a) has been rotated by an angle β about f(x) relative to the image
of the equilateral triangular lattice determined by f(x) and f(y0). This corresponds
to a shift of distance 2r sin(β/2) ≥ 4 for the point f(a) from the point f(q), which by
the triangle inequality implies that d(f(a), f(b)) > 2. But this contradicts our above
claim that any pair of points less than or equal to two units apart must map to a pair
of points less than or equal to two units apart. Therefore f(p) must be the point on
the circle of radius 1 centered at f(x) such that the angle from f(y0) to f(p) measured
in the direction of f(y1) is θ, completing our proof.
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