Immerse Metric Space Homework
 (Exercises 1-21)

1. In \mathbb{R}^{n}, define $d(x, y)=\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|$. Show that d is a metric that induces the usual topology. Sketch the basis elements when $n=2$.

Solution: Steps (a) through (d) show that $d(x, y)$ is a metric.
(a) We want to show that the distance between any two points is greater than or equal to zero. We know that each $\left|x_{i}-y_{i}\right|$ is greater than or equal to 0 by the definition of absolute value. So the sum $d(x, y)=\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|$ is greater than or equal to 0 .
(b) Next we want to show that $d(x, y)=0 \Longleftrightarrow x=y$.
\Rightarrow Suppose that $d(x, y)=\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|=0$; then each $\left|x_{i}-y_{i}\right|=0$ for all $i=1 \ldots n$. So $x_{i}-y_{i}=0$ and $x_{i}=y_{i}$ for all $i=1 \ldots n$.
\Leftarrow Suppose that $y=x$. Then for $d(x, y)=\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|$ we can plug x_{i} in for y_{i}, and we get $d(x, y)=\left|x_{1}-x_{1}\right|+\ldots+\left|x_{n}-x_{n}\right|=0$.
(c) Now we want to show that $d(x, y)=d(y, x)$.

Assume $d(x, y) \neq d(y, x)$. Let $m_{i}=x_{i}-y_{i}$ for all $i=1, \ldots, n$. Then $\left|x_{1}-y_{1}\right|+\ldots+\mid x_{n}+$ $y_{n}\left|\neq\left|y_{1}-x_{1}\right|+\ldots+\left|y_{n}-x_{n}\right|\right.$, implying that $| m_{1}\left|+\ldots+\left|m_{n}\right| \neq\left|-m_{1}\right|+\ldots+\left|-m_{n}\right|\right.$. We have reached a contradiction, since by definition $|m|=|-m|$. Therefore, $d(x, y)=$ $d(y, x)$.
(d) Finally we want to show that the triangle inequality holds for d . We know that $\left|x_{i}-y_{i}\right|=\left|x_{i}-z_{i}+z_{i}-y_{i}\right| \leq\left|x_{i}-z_{i}\right|+\left|z_{i}-y_{i}\right|$. Since this holds for all $i=1, \ldots, n$ we know that $d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}-z_{i}\right|+\left|z_{i}-y_{i}\right|=d(x, z)+d(z, y)$. Thus the triangle inequality holds for d .

Now to show that $d(x, y)$ induces the usual topology, let δ be the usual metric, let $B_{\delta}(x, \varepsilon)$ be given, and let y be in the open ball centered at x of radius $\frac{\varepsilon}{\sqrt{n}}$, that is $y \in B_{d}\left(x, \frac{\varepsilon}{\sqrt{n}}\right)$. Then we know that $\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}+y_{n}\right|<\frac{\varepsilon}{\sqrt{n}}$, which implies that each individual $\left|x_{i}-y_{i}\right|<\frac{\varepsilon}{\sqrt{n}}$ for all $i=1, \ldots, n$. Therefore:

$$
\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}<\sqrt{\sum_{i=1}^{n} \frac{\varepsilon^{2}}{n}}=\varepsilon
$$

Hence, $y \in B_{\delta}(x, \varepsilon)$, which means that y is in an open ball in the topology induced by $d(x, y)$, implies that y is in an open ball in usual topology. Now if we let $B_{d}(x, \varepsilon)$ be given, and let $y \in B_{\delta}\left(x,\left(\frac{\varepsilon}{n}\right)^{2}\right)$, which implies that $\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}<\left(\frac{\varepsilon}{n}\right)^{2}$. Then we know that each $\left|x_{i}-y_{i}\right|^{2}<\left(\frac{\varepsilon}{n}\right)^{2}$ for all $i=1, \ldots, n$, implying that $\left|x_{i}-y_{i}\right|<\frac{\varepsilon}{n}$ for all $i=1, \ldots, n$. Therefore:

$$
\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|<\varepsilon
$$

Thus, $y \in B_{d}(x, \varepsilon)$. Thus, if y is in an open ball in the usual topology, then y is in an open ball in the topology induced by $d(x, y)$.
2. In \mathbb{R}^{n}, define $d(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$. Assume that d is a metric, and show that d induces the usual topology.

We want to show that $\tau_{d} \sim \tau_{\text {Euc }}$ where τ_{d} is the topology induced by the metric d and $\tau_{\text {Euc }}$ is the topology induced by the usual Euclidean metric. We know by exercise (1) that $\tau_{E u c} \sim \tau_{a b s}$ where $\tau_{a b s}$ is the topology induced by the absolute value metric as defined in exercise (1). So we will prove that $\tau_{d} \sim \tau_{a b s}$. Let $y \in B_{d}(x, \epsilon)$. Then $\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}<\epsilon$. So $\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}<\epsilon^{p}$. So $\left|x_{i}-y_{i}\right|^{p}<\epsilon^{p} \forall i=1, \ldots, n$. Then $\left|x_{i}-y_{i}\right|<\epsilon \forall i=1, \ldots, n$.
So $\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|<n \epsilon$. So $y \in B_{a b s}(x, n \epsilon)$. Now let $z \in B_{a b s}(x, \epsilon)$.
So $\sum_{i=1}^{n}\left|x_{i}-z_{i}\right|<\epsilon$. Then $\left(\sum_{i=1}^{n}\left|x_{i}-z_{i}\right|\right)^{p}<\epsilon^{p}$.
We know $\sum_{i=1}^{n}\left|x_{i}-z_{i}\right|^{p} \leq\left(\sum_{i=1}^{n}\left|x_{i}-z_{i}\right|\right)^{p}$. So $\left(\sum_{i=1}^{n}\left|x_{i}-z_{i}\right|^{p}\right)^{1 / p} \leq \sum_{i=1}^{n}\left|x_{i}-z_{i}\right|<\epsilon$. So $z \in B_{d}(x, \epsilon)$. Hence $\tau_{d} \sim \tau_{a b s} \sim \tau_{\text {Euc }}$ as desired.
3. Show that the topology induced by a metric d is the coarsest topology relative to which the metric is continuous

Proof. (First, show If d is continuous with metric τ, then $\tau_{d} \subseteq \tau$.)

Assume that d is continuous with respect to τ. Let B be an open set in τ_{d} such that $B=B\left(x_{0}, \epsilon\right)$ for some $x_{0} \in X$.
Show B is open in (X, τ).
$d: X \times X \rightarrow \Re^{+}$is continuous wrt τ.
Define $d^{\prime}: X \rightarrow \Re^{+}$to be $d^{\prime}(x)=d\left(x, x_{0}\right)$.
So $d^{\prime}=d_{\mid\left(X \times x_{0}\right)}$, so d^{\prime} is continuous wrt to τ.
Note that $[0, \epsilon)$ is open in \Re^{+}. Then $B=B\left(x_{0}, \epsilon\right)=d^{\prime-1}([0, \epsilon]) \subseteq(X, \tau)$.
(Next show τ_{d} makes d continuous.)
Let $(a, b) \in \Re^{+}$.
Show $d^{-1}((a, b))$ is open in τ_{d}.
Let $U=d^{-1}((a, b))$.

Let $\bar{x} \in d^{-1}((a, b))$, so \bar{x} is a point (x, y).
$d(x, y) \in(a, b)$.
Let $\epsilon=\frac{1}{2} \min \{|a-d(x, y)|,|b-d(x, y)|\}$.
Let $B_{1}=B(x, \epsilon) \subseteq X$ and $B_{2}=B(y, \epsilon) \subseteq X$.
Show $B_{1} \times B_{2} \subset U$.
Let $z \in B_{1} \times B_{2}$, where $z=\left(x^{\prime}, y^{\prime}\right)$.
Show $a<d\left(x^{\prime}, y^{\prime}\right)<b$.
$d\left(x^{\prime}, y^{\prime}\right) \leq d\left(x^{\prime}, x\right)+d(x, y)+d\left(y, y^{\prime}\right)$.
Since $d\left(x^{\prime}, x\right)<\epsilon \leq \frac{1}{2}(|b-d(x, y)|)$
and $d\left(y, y^{\prime}\right)<\epsilon \leq \frac{1}{2}(|b-d(x, y)|), d\left(x^{\prime}, y^{\prime}\right)<b$.
$d\left(x^{\prime}, y^{\prime}\right) \geq d(x, y)-\left(d\left(x^{\prime}, x\right)+d\left(y^{\prime}, y\right)\right)>a$, by the inverse triangle-inequality.
Thus $z \in U$, so $U=d^{-1}((a, b))$ is open.
Therefore, d is continuous on τ_{d}.
4. Let d be a metric and let $d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}$. Prove that d^{\prime} is a bounded metric.

Claim: If $\alpha \leq \beta$ and $\alpha, \beta>0$, then $\frac{\alpha}{1+\alpha} \leq \frac{\beta}{1+\beta}$.
Proof. (Proof of claim) Let $\alpha \leq \beta$ and $\alpha, \beta>0$. Adding $\alpha \beta$ to both sides we obtain, $\alpha+\alpha \beta \leq \beta+\alpha \beta$. Now factoring out both sides, we get $\alpha(1+\beta) \leq \beta(1+\alpha)$. Finally, since $\alpha, \beta>0$, we can divide both sides and we are left with, $\frac{\alpha}{1+\alpha} \leq \frac{\beta}{1+\beta}$.

Proof. (Proof that d^{\prime} is a metric) Let $p, q, r \in X$.

1. $d^{\prime}(p, q)=\frac{d(p, q)}{1+d(p, q)} \geq 0$ since $d(p, q) \geq 0$ and $1+d(p, q)>0$. Therefore, $d^{\prime}(p, q) \geq 0$.
2. We know that $d^{\prime}(p, q)=\frac{d(p, q)}{1+d(p, q)}=0$ if and only if $d(p, q)=0$. Since d is a metric, $d(p, q)=0$ if and only if $p=q$. Therefore, $d^{\prime}(p, q)=0$ if and only if $p=q$.
3. Since d is a metric, $d(p, q)=d(q, p)$. So, $d^{\prime}(p, q)=\frac{d(p, q)}{1+d(p, q)}=\frac{d(q, p)}{1+d(q, p)}=d^{\prime}(q, p)$ Therefore, $d^{\prime}(p, q)=d^{\prime}(q, p)$.
4. Since d is a metric, $d(p, q) \leq d(p, r)+d(r, q)$. So by the above Lemma,
$d^{\prime}(p, q)=\frac{d(p, q)}{1+d(p, q)} \leq \frac{d(p, r)+d(r, q)}{1+d(p, r)+d(r, q)}=\frac{d(p, r)}{1+d(p, r)+d(r, q)}+\frac{d(r, q)}{1+d(p, r)+d(r, q)}$.
Since d is a metric, $d(p, r), d(r, q) \geq 0$. Therefore $\frac{d(p, r)}{1+d(p, r)+d(r, q)} \leq d^{\prime}(p, r)$ and $\frac{d(r, q)}{1+d(p, r)+d(r, q)} \leq d^{\prime}(r, q)$.

Thus, $d^{\prime}(p, q) \leq \frac{d(p, r)}{1+d(p, r)+d(r, q)}+\frac{d(r, q)}{1+d(p, r)+d(r, q)} \leq d^{\prime}(p, r)+d^{\prime}(r, q)$. Therefore, $d^{\prime}(p, q) \leq d^{\prime}(p, r)+d^{\prime}(r, q)$.
Thus d^{\prime} is a metric.

Proof. (Proof that d^{\prime} is bounded) Let $p, q \in X$. Let $M=1$. Since d is a metric, $d(p, q) \geq 0$. Therefore, $d(p, q) \geq 0,1+d(p, q)>0$ and $d(p, q)<1+d(p, q)$. Hence, $d^{\prime}(p, q)=\frac{d(p, q)}{1+d(p, q)}<1=M$. Therefore, d^{\prime} is bounded by M.
5. Let d be a metric. Show that $\bar{d}(x, y)=\min \{d(x, y), 1\}$ induces the same topology as d.

Proof. Let τ_{d} and $\tau_{\bar{d}}$ be the topologies induced by d and \bar{d} respectively. To show that \bar{d} induces the same topology as d, we will show containment of open sets in τ_{d} in $\tau_{\bar{d}}$, and vice-versa.

Let $U \in \tau_{d}$ and fix $\rho \in U$. Then there exists $r>0$ such that $B_{d}(\rho, r) \subseteq U$, by definition of an open set. Let $r^{\prime}=\min \{r, 1\}$. Then $B_{\bar{d}}\left(\rho, r^{\prime}\right)=B_{d}\left(\rho, r^{\prime}\right) \subseteq B_{d}(\rho, r) \subseteq U$. So $U \in \tau_{\bar{d}}$.

Now let $U \in \tau_{\bar{d}}$. Fix $\rho \in U$. Then there exists $r^{\prime}>0$ such that $B_{\bar{d}}\left(\rho, r^{\prime}\right) \subseteq U$. We may suppose that $r^{\prime} \leq 1$ (else $B_{\bar{d}}\left(\rho, r^{\prime}\right)=X \subseteq U$, which implies that $U=X$, open in τ_{d}). So $B_{d}\left(\rho, r^{\prime}\right)=B_{\bar{d}}\left(\rho, r^{\prime}\right) \subseteq U$ and $U \in \tau_{d}$.

We have shown double containment of open sets in τ_{d} and $\tau_{\bar{d}}$, therefore we have that $\bar{d}(x, y)=\min \{d(x, y), 1\}$ induces the same topology as d.
6. For x and y in R^{n}, let $x \cdot y=\sum x_{i} y_{i}$ and $\|x\|=\sqrt{x \cdot x}$. Show that the Euclidean metric d on R^{n} is a metric by completing the following:.
(a) Show that $(x \cdot y)+(x \cdot z)=x \cdot(y+z)$.

PROOF.

$$
\begin{aligned}
(x \cdot y)+(x \cdot z) & =\sum x_{i} y_{i}+\sum x_{i} z_{i} \\
& =\sum\left(x_{i} y_{i}+x_{i} z_{i}\right) \\
& =\sum\left[x_{i}\left(y_{i}+z_{i}\right)\right] \\
& =x \cdot(y+z)
\end{aligned}
$$

(b) We need to show $|\vec{x} \cdot \vec{y}| \leq\|x\|\|y\| \forall \vec{x}, \vec{y} \in \mathbb{R}^{n}$

Proof. We note that

$$
\begin{aligned}
0 & \leq\|\vec{x}-t \vec{y}\|^{2} \\
& =|\vec{x}-t \vec{y}| \cdot|\vec{x}-t \vec{y}| \\
& =\vec{x} \cdot|\vec{x}-t \vec{y}|-t \vec{y}|\vec{x}-t \vec{y}| \\
& =\vec{x} \cdot \vec{x}-t \vec{x} \cdot \vec{y}-t \vec{y} \cdot \vec{y}+t^{2} \vec{y} \vec{y} \\
& =\|\vec{x}\|^{2}-2 t \vec{x} \cdot \vec{y}+t^{2}\|y\|^{2}
\end{aligned}
$$

If $\vec{y}=0$, we have shown the inequality. Assume that $y \neq 0$. Let $t=\frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|^{2}}$. Then we have from above

$$
\begin{aligned}
0 & \leq\|x\|^{2}-2 \frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|^{2}} \vec{x} \cdot \vec{y}+\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|^{2}}\right)^{2}\|y\|^{2} \\
& \leq\|x\|^{2}-2 \frac{(\vec{x} \cdot \vec{y})^{2}}{\|\vec{y}\|^{2}}+\frac{(\vec{x} \cdot \vec{y})^{2}}{\|\vec{y}\|^{2}} \\
& =\|x\|^{2}-\frac{(\vec{x} \cdot \vec{y})^{2}}{\|\vec{y}\|^{2}}
\end{aligned}
$$

Then, we have

$$
(\vec{x} \cdot \vec{y})^{2} \leq\|\vec{x}\|^{2}\|\vec{y}\|^{2} .
$$

Thus taking the square root of both sides we have,

$$
(\vec{x} \cdot \vec{y}) \leq\|\vec{x}\|\|\vec{y}\|
$$

(c) Show that $\|x+y\| \leq\|x\|+\|y\|$.

PROOF.

$$
\begin{aligned}
\|x+y\| & =\sqrt{(x+y) \cdot(x+y)} \\
\|x+y\|^{2} & =\sqrt{(x+y) \cdot(x+y)} \\
& =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}^{2}+2 x_{i} y_{i}+y_{i}^{2}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} 2 x_{i} y_{i}+\sum_{i=1}^{n} y_{i}^{2} \\
& =\|x\|^{2}+2 \sum_{i=1}^{n} x_{i} y_{i}+\|y\|^{2} \\
& \leq\|x\|^{2}+2|x \cdot y|+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \text { by part (c) } \\
& =(\|x\|+\|y\|)^{2}
\end{aligned}
$$

Taking the squareroot of both sides we achieve the desired result.
(d) Verify that $d(x, y)=\|x-y\|$ is a metric.

PROOF.

To verify that d is a metric it must satisfy the following four properties.
i. $d(x, y) \geq 0$

Proof.

$$
\begin{aligned}
d(x, y) & =\|x-y\| \\
& =\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \\
& \geq 0
\end{aligned}
$$

ii. $d(x, y)=0 \Leftrightarrow x=y$

Proof.

$$
\begin{aligned}
d(x, y) & =0 \\
\Leftrightarrow\|x-y\| & =0 \\
\Leftrightarrow \sqrt{(x-y) \cdot(x-y)} & =0 \\
\Leftrightarrow \sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} & =0 \\
\Leftrightarrow x_{i} & =y_{i} \forall i
\end{aligned}
$$

iii. $d(x, y)=d(y, x)$

Proof.

$$
\begin{aligned}
d(x, y) & =\|x-y\| \\
& =\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \\
& =\sqrt{\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2}} \\
& =\|y-x\| \\
& =d(y, x)
\end{aligned}
$$

$$
\text { iv. } d(x, y) \leq d(x, r)+d(r, y)
$$

Proof.

$$
\begin{aligned}
d(x, y) & =\|x-y\| \\
& =\|(x-r)+(r-y)\| \\
& \leq\|x-r\|+\|r-y\|(\text { by part }(\mathrm{c})) \\
& =d(x, r)+d(r, y)
\end{aligned}
$$

By verifying these properties we have proven that the Euclidean metric d on R^{n} is a metric.
7. Prove the continuity of the algebraic operations of the real line.

Lemma: Let $f, g: X \rightarrow Y$ be continuous functions. Then the function $h: X \times X \rightarrow$ $Y \times Y$ defined by $h(x, y)=(f(x), g(y))$ is continuous.

From the lecture notes theorem part (i) it is sufficient to prove that the function $F: X \times X \rightarrow Y$ defined by $F(x, y)=f(x)$ is continuous (and similarly the function $G: X \times X \rightarrow Y$ defined by $G(x, y)=g(y)$ is continuous). Let U be an open set in Y. Then $f^{-1}(U)$ is open in X. But $F^{-1}(U)=f^{-1}(U) \times X$. Since $f^{-1}(U)$ and X are both open in $X, f^{-1}(U) \times X$ is open in $X \times X$, so F is continuous.

Proof.

(a) Addition: Let (a, b) be a basis element of \mathbb{R}. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the addition function. Then $f^{-1}[(a, b)]=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x+y \in(a, b)\}$.
Fix any $(c, d) \in f^{-1}[(a, b)]$ and let $\epsilon=\min \{(c+d-a),(b-(c+d))\}$. We want to show that there is an open set containing (c, d) that is contained within $f^{-1}[(a, b)]$. Let d_{1}^{2} be the taxicab metric, which we know induces the usual topology on $\mathbb{R} \times \mathbb{R}$. Then $B_{d_{1}^{2}}((c, d), \epsilon / 2)$ is an open set that that contains the point (c, d).
Let $(w, z) \in B_{d_{1}^{2}}((c, d), \epsilon / 2)$. Then $d_{1}^{2}((w, z),(c, d))=|w-c|+|z-d|<\epsilon / 2$, which implies that both $|w-c|$ and $|z-d|$ are less than $\epsilon / 2$. So $w+z<\epsilon+c+d \leq$ $b-(c+d)+c+d=b$ and $w+z>c+d-\epsilon \geq c+d-(c+d-a)=a$. So $w+z \in(a, b)$, which implies that $B_{d_{1}^{2}}((c, d), \epsilon / 2) \subseteq f^{-1}[(a, b)]$. Therefore $f^{-1}[(a, b)]$ is open, which implies that f is continuous.
(b) Subtraction: It is enough to show that the additive inverse map $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=-x$ is continuous. Then the subtraction map $s: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ can be written as $s(x, y)=f(i(x), g(y))$ where $i(x)$ is the identity map (continuous by lecture theorem part (b)) and $f(x, y)$ is the addition map which we have shown to be continuous. Then by our lemma s is the composition of continuous functions is itself continuous.
Fix any $x \in \mathbb{R}$ and any $\epsilon>0$. If $|x-y|<\epsilon$, then $|g(x)-g(y)|=|-x-(-y)|=$ $|(-1)(x-y)|=|x-y|<\epsilon$. So by our $\epsilon-\delta$ definition of continuity g is continuous.
(c) Multiplication Fix any $\epsilon>0$ and any point $(x, y) \in \mathbb{R} \times \mathbb{R}$. Then set $\delta=$ $\frac{-m+\sqrt{m^{2}+4 \epsilon}}{2}>0$, where $m=\max \{|x|,|y|\}$. Consider any $\left(x_{n}, y_{n}\right) \in B_{d_{1}^{2}}((x, y), \delta)$. Then

$$
\begin{aligned}
\left|x-x_{n}\right|+\left|y-y_{n}\right| & <\delta \\
\left|x-x_{n}\right|^{2}+2\left|x-x_{n}\right|\left|y-y_{n}\right|+\left|y-y_{n}\right|^{2} & <\delta^{2} \\
\left|x-x_{n}\right|\left|y-y_{n}\right| & <\delta^{2} .
\end{aligned}
$$

From our definition of m we know

$$
|y|\left|x-x_{n}\right|+|x|\left|y-y_{n}\right| \leq m\left(\left|x-x_{n}\right|+\left|y-y_{n}\right|\right)<m \delta .
$$

We note that

$$
\delta^{2}+m \delta=\left(\frac{m^{2}}{4}-\frac{m \sqrt{m^{2}+4 \epsilon}}{2}+\frac{m^{2}+4 \epsilon}{4}\right)+\left(\frac{-m^{2}}{2}+\frac{m \sqrt{m^{2}+4 \epsilon}}{2}\right)=\epsilon
$$

Combining these results and using the triangle inequality we have

$$
\begin{aligned}
|y|\left|x-x_{n}\right|+|x|\left|y-y_{n}\right|+\left|x-x_{n}\right|\left|y-y_{n}\right| & <m \delta+\delta^{2}=\epsilon \\
\left|y x-y x_{n}\right|+\left|y-y_{n}\right|\left(|x-0|+\left|x-x_{n}\right|\right) & <\epsilon \\
\left|y x-y x_{n}\right|+\left|y-y_{n}\right|\left(\left|x_{n}-0\right|\right) & <\epsilon \\
\left|y x-y x_{n}\right|+\left|y x_{n}-y_{n} x_{n}\right| & <\epsilon \\
\left|y x-y_{n} x_{n}\right| & <\epsilon .
\end{aligned}
$$

Therefore, by our $\epsilon-\delta$ definition of continuity multiplication of real numbers is continuous.
(d) Division It is enough to show that the multiplicative inverse map $r: \mathbb{R} /\{0\} \rightarrow \mathbb{R}$ defined by $r(x)=1 / x$ is continuous. Then the division map $v: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ can be written as $v(x, y)=m(i(x), r(y))$ where $i(x)$ is the identity map (continuous by lecture theorem part (b)) and $m(x, y)$ is the multiplication map which we have shown to be continuous. Then by our lemma v is the composition of continuous functions is itself continuous.
Fix any $\epsilon>0$ and any $x \neq 0$. Let $\delta=\frac{\epsilon|x|^{2}}{1+\epsilon|x|}>0$. Consider any $x_{n} \in B(x, \delta)$. Then

$$
\begin{aligned}
&\left|x-x_{n}\right|<\delta=\frac{\epsilon|x|^{2}}{1+\epsilon|x|} \\
&(1+\epsilon|x|)\left|x-x_{n}\right|<\epsilon|x|^{2} \\
&\left|x-x_{n}\right|+\epsilon|x|\left|x-x_{n}\right|<\epsilon|x|^{2} \\
&\left|x-x_{n}\right|<\epsilon|x|\left(|x|-\left|x-x_{n}\right|\right)
\end{aligned}
$$

Applying the triangle inequality we have

$$
\begin{aligned}
& \left|x-x_{n}\right|<\epsilon|x|\left(\left|x-x_{n}\right|+\left|x_{n}-0\right|-\left|x-x_{n}\right|\right) \\
& \left|x-x_{n}\right|<\epsilon|x|\left(\left|x_{n}\right|\right) \\
& \frac{\left|x-x_{n}\right|}{|x|\left|x_{n}\right|}<\epsilon \\
& \left|\frac{1}{x_{n}}-\frac{1}{x}\right|<\epsilon .
\end{aligned}
$$

Therefore, by our $\epsilon-\delta$ definition of continuity taking reciprocals of real numbers is continuous.
8. Given $f, g: X \rightarrow \mathbb{R}$ are continuous, prove that $f+g, f g, f-g$, and f / g (provided g is nowhere zero) are all continuous.

Notice that these are all functions of the form $h(f(x), g(x))$. For example, given $h(a, b)=a+b$, then $f(x)+g(x)=h(f(x), g(x))$. If we can show that, given continuous $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$, that $h(f(x), g(x))$ is continuous, then we would be done.
Let $p: X \rightarrow \mathbb{R}^{2}$ be defined as $p(x)=(f(x), g(x))$. Then we have that $h(f(x), g(x))$ is just $h \circ p(x)$. Since we know compositions of continuous functions are continuous, we just need to show that p is continuous. (See the lemma in problem 7 for the proof of this claim.)
9. In \mathbb{R}^{n} (and metric spaces, in general), $x_{n} \rightarrow x$ means that given $\epsilon>0$ there is a finite integer N such that $d\left(x_{n}, x\right)<\epsilon$ for all $n>N$. Show that this agrees with the definition of convergence given for topological spaces.

Problem rephrased:
In topology:
$x_{n} \rightarrow x \Leftrightarrow \forall U$ neighborhood of $x \exists N \in \mathbb{N}$ such that $n>N \Rightarrow x_{n} \in U$
In $\mathbb{R}^{d}: x_{n} \rightarrow x \Leftrightarrow \forall \epsilon>0 \exists N \in \mathbb{N}$ such that $n>N \Rightarrow d\left(x_{n}, x\right)<\epsilon$
Show these statements are equivalent.
Proof: (\Leftarrow) Let $x_{n} \rightarrow x$ in \mathbb{R}^{d}. Let U be a neighborhood of x.
Then $\exists \epsilon>0$ such that $B(x, \epsilon) \subseteq U$
So $\exists N \in \mathbb{N}$ such that for $n>N, d\left(x_{n}, x\right)<\epsilon$ which implies $x_{n} \in B(x, \epsilon)$
$\therefore x_{n} \in U$.
(\Rightarrow) Let $x_{n} \rightarrow x$ (in topology). Given $\epsilon>0, B(x, \epsilon)$ (which is a neighborhood of x) \exists $N \in \mathbb{N}$ such that for $n>N, x_{n} \in B(x, \epsilon)$ which implies $d\left(x_{n}, x\right)<\epsilon$. \square
10. (The solution to 10 was not typed up due to a miscommunication)
11. (The solution to 11 was not typed up, because of its similarity to 7)
12. Using the closed set formulation of continuity show that the sets $\{(x, y) \mid x y=1\}$, $\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$, and $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ are closed in \mathbb{R}^{2}.

Proof. Recall that for $f: X \rightarrow Y$ a continuous function, $f^{-1}(C)$ is closed in X whenever C is closed in Y. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x y$. By exercise $7, f$ is continuous. $\{1\}$ is a closed set in \mathbb{R}. Then $f^{-1}(\{1\})=\{(x, y) \mid x y=1\}$ is closed in \mathbb{R}^{2}. Similarly, let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $g(x, y)=x^{2}+y^{2}$. Then $g^{-1}(\{1\})=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ is closed in \mathbb{R}^{2}. Since $(-\infty, 1]$ is a closed set, $g^{-1}((-\infty, 1])=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ is closed in \mathbb{R}^{2}.
13. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\frac{1}{n^{3}(x-(1 / n))^{2}+1}$ and let $f(x)=0$. Show that $f_{n}(x) \rightarrow f(x)$ for each x, but f_{n} doesn't converge uniformly to f.

Pointwise Convergence:

Let $\epsilon>0$ and $x \in \mathbb{R}$ be given. We want to show that $f_{n}(x)$ converges pointwise to zero. Note that if $x=0$, then $f_{n}(0)=\frac{1}{n+1}$, which clearly converges to 0 as $n \rightarrow \infty$. When $x \neq 0$, I claim that if $N=\frac{\sqrt{\frac{1}{\epsilon}-1}}{x}$, then for all $n>N, f_{n}(x)<\epsilon$.
Proof of claim:

$$
\begin{aligned}
n & >\frac{\sqrt{\frac{1}{\epsilon}-1}}{x} \\
(n x-1)^{2} & >1 / \epsilon-1 \\
n^{2} x^{2}-2 n x+1 & >1 / \epsilon-1 \\
n^{3} x^{2}-2 n^{2} x+n & >1 / \epsilon-1 \\
n^{3}\left(x^{2}-(2 x / n)+\left(1 / n^{2}\right)\right) & >1 / \epsilon-1 \\
n^{3}(x-(1 / n))^{2} & >1 / \epsilon-1 \\
\frac{1}{n^{3}(x-(1 / n))^{2}+1} & <\epsilon \\
f_{n}(x) & <\epsilon .
\end{aligned}
$$

$$
n^{3} x^{2}-2 n^{2} x+n>1 / \epsilon-1 \quad(\text { since } n \geq 1)
$$

Thus, we can make $f_{n}(x)<\epsilon$, so we have pointwise convergence to 0 .

Uniform Convergence:

We see that $f_{n}(1 / n)=1$ for all n, so for $0<\epsilon<1$, there's no N such that for all $x \in \mathbb{R}$ and all $n>N, f_{n}(x)<\epsilon$. Thus, f_{n} doesn't converge uniformly to 0 .
14. (a) If $\left\{s_{n}\right\}$ is a bounded sequence of real numbers and $s_{n} \leq s_{n+1}$ for each n, then $\left\{s_{n}\right\}$ converges.

Let T be the least upper bound of $\left\{s_{n}\right\}$. Since $\left\{s_{n}\right\}$ is a bounded sequence, we know $T<\infty$. I claim that the s_{n} converge to T. Take any ball B of radius ϵ centered around T. B must contain some s_{N} for some N, because otherwise $T-\epsilon$ would be upper bound
of the s_{n}, contradicting the leastness of T. Since it contains s_{N}, it also contains s_{n} for all $n \geq N$, since s_{n} are monotonically increasing. Therefore, s_{n} converge to T.
(b) Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Define $s_{n}=\sum_{i=1}^{n} a_{i}$. If $s_{n} \rightarrow s$, we say the infinite series $\sum_{i=1}^{\infty} a_{i}$ converges to s. Show that if $\sum a_{i}$ converges to s and $\sum b_{i}$ converges to t, then $\sum c a_{i}+b_{i}$ converges to $c s+t$.

Take some $\epsilon>0$. Note that if $c=0$, then the result is obvious. Otherwise, if $\sum a_{i} \rightarrow s$, then there exists an N_{a} such that for $n \geq N_{a},\left|\sum_{i=1}^{n} a_{i}-s\right|<\frac{\epsilon}{2|c|}$. Likewise, there exists an N_{b} such that for $n \geq N_{b},\left|\sum_{i=1}^{n} b_{i}-t\right|<\epsilon / 2$. Let $N=\max \left\{N_{a}, N_{b}\right\}$. Therefore, we see that for $n \geq N$,

$$
\begin{aligned}
\left|\sum_{i=1}^{n}\left(c a_{i}+b_{i}\right)-(c s+t)\right| & =\left|c\left(\sum_{i=1}^{n} a_{i}-s\right)+\left(\sum_{i=1}^{n} b_{i}-t\right)\right| \\
& <|c|\left(\frac{\epsilon}{2|c|}\right)+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Therefore, $\sum c a_{i}+b_{i}$ converges to $c s+t$.
(c) (Comparison test) If $\left|a_{i}\right| \leq b_{i}$ for each i and $\sum b_{i}$ converges then $\sum a_{i}$ converges.

Let $c_{i}=\left\{\begin{array}{ll}a_{i} & \text { if } a_{i} \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$, and let $d_{i}=\left\{\begin{array}{ll}a_{i} & \text { if } a_{i} \leq 0 \\ 0 & \text { otherwise }\end{array}\right.$. Suppose $\sum b_{i} \rightarrow b$. Then we see that both $\sum c_{i}$ and $\sum d_{i}$ are bounded by b, and are strictly increasing. Therefore, by part (a), we have both $\sum c_{i}$ converges, and $\sum d_{i}$ converges.

Suppose $\sum c_{i} \rightarrow c$ and $\sum d_{i} \rightarrow d$. I claim that $\sum a_{i} \rightarrow c-d$. Take some $\epsilon>0$. There exists an N_{c} such that for $n \geq N_{c},\left|\sum_{i=1}^{n} c_{i}-c\right|<\epsilon / 2$. Likewise, there exists an N_{d} such that for $n \geq N_{d},\left|\sum_{i=1}^{n} d_{i}-d\right|<\epsilon / 2$. Let $N=\max \left\{N_{a}, N_{b}\right\}$. Then, we see that for $n \geq N$,

$$
\left|\sum_{i=1}^{n} a_{i}-(c-d)\right|=\left|\left(\sum_{i=1}^{n} c_{i}-c\right)+\left(\sum_{i=1}^{n} d_{i}-d\right)\right| .
$$

for $\gamma \geq N_{c}$ and $\delta \geq N_{d}$. Therefore, we have

$$
\begin{aligned}
\left|\sum_{i=1}^{n} a_{i}-(c-d)\right| & <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Therefore, the a_{i} converge.
(d) (Weierstrass M-test) Given $f_{n}: X \rightarrow \mathbb{R}$, and let $s_{n}(x)=\sum_{i=1}^{n} f_{i}(x)$. If $f_{i}(x) \leq b_{i}$, for all x and i, where $\sum b_{i}$ converges, then $s_{n}(x)$ converges uniformly to a function $s(x)$.

Let $s(x)=\sum_{i=1}^{\infty} f_{i}(x)$ pointwise, which we know converges for each individual x because of part (c). We want to show this convergence is uniform.
Suppose it were not. Then there exists an $\epsilon>0$ such that for any n, there exists an x such that

$$
\left|\sum_{i=1}^{n} f_{i}(x)-s(x)\right| \geq \epsilon
$$

We know that since $\sum b_{i}$ converges, it is Cauchy. So, there exists an N such that for $n, k \geq N$,

$$
\left|\sum_{i=n}^{k} b_{i}\right|<\epsilon
$$

for the same ϵ as above.
For this value of N, there exists an x_{0} such that

$$
\left|\sum_{i=1}^{N} f_{i}\left(x_{0}\right)-s\left(x_{0}\right)\right| \geq \epsilon
$$

We know that $\sum_{i=1}^{n} f_{i}\left(x_{0}\right) \rightarrow s\left(x_{0}\right)$. Therefore, there exists a $K>N$, such that for $k \geq K$, we have

$$
\left|s\left(x_{0}\right)-\sum_{i=1}^{k} f_{i}\left(x_{0}\right)\right|<\epsilon / 2
$$

Therefore, combining the last two inequalities with the triangle inequality, we get

$$
\begin{aligned}
\left|\sum_{i=1}^{N} f_{i}\left(x_{0}\right)-s\left(x_{0}\right)\right|-\left|s\left(x_{0}\right)-\sum_{i=1}^{k} f_{i}\left(x_{0}\right)\right| & \geq \epsilon-\epsilon / 2 \\
\left|\sum_{i=1}^{N} f_{i}\left(x_{0}\right)-s\left(x_{0}\right)+s\left(x_{0}\right)-\sum_{i=1}^{k} f_{i}\left(x_{0}\right)\right| & \geq \epsilon / 2 \\
\left|\sum_{i=N+1}^{k} f_{i}\left(x_{0}\right)\right| & \geq \epsilon / 2
\end{aligned}
$$

However, we see that (using the triangle inequality again)

$$
\begin{aligned}
\left|\sum_{i=N+1}^{k} f_{i}\left(x_{0}\right)\right| & \leq \sum_{i=N+1}^{k}\left|f_{i}\left(x_{0}\right)\right| \\
& \leq \sum_{i=N+1}^{k} b_{i} \\
& <\epsilon / 2
\end{aligned}
$$

This is a contradiction. Therefore, the convergence is in fact uniform.
15. Let f be a uniformly continuous real-valued function on a bounded subset E of the real line. Show that f is bounded on E.

Proof.

Since E is bounded, $E \subset[-M, M]$ for some $M \geq 0$. Let $\varepsilon=1$. Since f is uniformly continuous, choose $\delta>0$ such that $|f(x)-f(y)|<\varepsilon=1$ whenever $|x-y|<\delta$. Let $\mathcal{B}=\left\{\left.B\left(x, \frac{\delta}{2}\right) \right\rvert\, x \in[-M, M]\right\}$ Since $[-M, M]$ is compact and \mathcal{B} is an open cover of $[-M, M]$, there exists finite subcover $B\left(x_{1}, \frac{\delta}{2}\right), \ldots, B\left(x_{n}, \frac{\delta}{2}\right)$. Let $x, y \in E \cap B\left(x_{i}, \frac{\delta}{2}\right)$ for some $i=1, \cdots, n$. Then $|x-y|<\delta$ which implies $|f(x)-f(y)|<1$. Hence f is bounded on each $E \cap B\left(x_{i}, \frac{\delta}{2}\right)$, say by N_{i}. Since $B\left(x_{1}, \frac{\delta}{2}\right), \ldots, B\left(x_{n}, \frac{\delta}{2}\right)$ covers E, f is bounded on E by $\max \left\{N_{i}\right\}$ for $i=1, \ldots, n$.

Show that f need not be bounded if E is not bounded.

Example:
Let $E=\mathbb{R}$ and let $f(x)=x$. Then f is uniformly continuous, since we are given $\varepsilon>0$, and letting $\delta=\varepsilon,|x-y|<\delta \Rightarrow|x-y|<\varepsilon \Rightarrow|f(x)-f(y)|<\varepsilon$. Finally, f is clearly not bounded on \mathbb{R}, since given any $M>0, f(M+1)=M+1>M$.
16. Consider the function f defined by $f(x)= \begin{cases}0 & x \notin \mathbb{Q} \\ 1 / \mathrm{n} & x=\frac{m}{n} \\ 1 & x=0 .\end{cases}$ Prove that f is continuous at every irrational and discontinuous at every rational.

Proof. Let $x_{0} \in \mathbb{Q}-\{0\}$ such that $x_{0}=\frac{m_{0}}{n_{0}}$ where m_{0}, n_{0} are relatively prime and $n_{0}>0$. Fix $\epsilon<\frac{1}{n_{0}}$. For any $\delta>0$, there is some $x \in \mathbb{R}-\mathbb{Q}$ such that $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. So $\left|x_{0}-x\right|<\delta$ but $\left|f(x)-f\left(x_{0}\right)\right|=\left|0-\frac{1}{n_{0}}\right|=\frac{1}{n_{0}}>\epsilon$. So f is discontinuous at $x_{0} \in \mathbb{Q}-\{0\}$.

Now consider the case where $x=0$. Then for $\epsilon<1$ and any $\delta>0$, there is some $x \in \mathbb{R}-\mathbb{Q}$ such that $x \in(-\delta, \delta)$. Again $|0-x|<\delta$ but $|f(x)-f(0)|=|0-1|=1>\epsilon$. We have f discontinuous at 0 , so f is discontinuous for all $x \in \mathbb{Q}$.

Now let $x_{0} \in \mathbb{R}-\mathbb{Q}$ and fix $\epsilon>0$. Let N be the smallest $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. For each $n<N$ define $q_{n}=\frac{m}{n}$ such that m is the smallest integer such that $\frac{m}{n}>x_{0}$ and m, n relatively prime. Also define $q_{n}^{\prime}=\frac{m}{n}$ such that m is the largest integer such that $\frac{m}{n}<x_{0}$ and m, n relatively prime. Consider the finite set of rationals $A=\left\{q_{n} \mid n<N\right\} \cup\left\{q_{n}^{\prime} \mid n<N\right\}$ and let $\delta=\min \left\{d\left(a, x_{0}\right) \mid a \in A\right\}$. Then $\left|x-x_{0}\right|<\delta$ means $\left|f(x)-f\left(x_{0}\right)\right|=0<\epsilon$ if $x \in \mathbb{R}-\mathbb{Q}$. And if $x \in \mathbb{Q}$, then $x=\frac{m^{\prime}}{n^{\prime}}$ where m^{\prime}, n^{\prime} are relatively prime and $n^{\prime} \geq N$, so $\left|f(x)-f\left(x_{0}\right)\right|=|f(x)|=\frac{1}{n^{\prime}} \leq \frac{1}{N}<\epsilon$.

Therefore f continuous at every irrational number.
17. Let $f: X \longrightarrow(R)$ be a continuous function on a metric space. Show that the zero set $Z_{f}=\{x \mid f(x)=0\}$ is closed.

The set $\{0\}$ is closed in \mathbb{R}. Therefore its continuous preimage

$$
Z_{f}=\{x \mid f(x)=0\}
$$

is closed.
18. If A is a nonempty subset of a metric space X, define the distance from x to A to be $\delta_{A}(x)=\operatorname{glb}_{y \in A} d(x, y)$. Prove: (a) $\delta_{A}(x)=0 \Leftrightarrow x \in \bar{A}$, and (b) δ_{A} is uniformly continuous.
(a) We have that $x \in \bar{A}$ if and only if every open set containing x contains a point of A. But this is true if and only if every open ball about x contains a point of A. By the definition of an ϵ-ball, this is true if and only if for every $\epsilon>0$, there exists $y \in A$ such that $d(x, y)<\epsilon$. But this is so if and only if $\operatorname{glb}_{y \in A} d(x, y)=0$, which is equivalent to $\delta_{A}(x)$.
(b) Let $\epsilon>0$ be given. Suppose $x, x^{\prime} \in X$ with $d\left(x, x^{\prime}\right)<\epsilon$; we will show that $\left|\delta_{A}(x)-\delta_{A}\left(x^{\prime}\right)\right|<\epsilon$, establishing uniform continuity.
Suppose to the contrary that $\left|\delta_{A}(x)-\delta_{A}\left(x^{\prime}\right)\right|>\epsilon$, and assume without loss of generality that $\delta_{A}\left(x^{\prime}\right)>\delta_{A}(x)$. Then we can write

$$
\delta_{A}\left(x^{\prime}\right)=\delta_{A}(x)+\epsilon+\gamma,
$$

where $\gamma>0$. But since $\delta_{A}(x)$ is the greatest lower bound of $\{d(x, z) \mid z \in A\}$, there exists a $y \in A$ such that $d(x, y)<\delta_{A}(x)+\gamma$. Then by the triangle inequality,

$$
\begin{aligned}
d\left(x^{\prime}, y\right) & \leq d\left(x^{\prime}, x\right)+d(x, y) \\
& <\epsilon+\delta_{A}(x)+\gamma \\
& =\delta_{A}\left(x^{\prime}\right) .
\end{aligned}
$$

But this contradicts that $\delta_{A}\left(x^{\prime}\right)$ is a lower bound for $\left\{d\left(x^{\prime}, z\right) \mid z \in A\right\}$.
19. Let A and B be disjoint nonempty closed subsets of a metric space X. Define $f: X \rightarrow$ \mathbb{R} by

$$
f(x)=\frac{\delta_{A}(x)}{\delta_{A}(x)+\delta_{B}(x)}
$$

for all $x \in X$.
(a) Show f is continuous and the range of f lies in $[0,1]$.

Note δ_{A} and δ_{B} are continuous on X, so $\delta_{A}+\delta_{B}$ is as well. Therefore, $f=\frac{\delta_{A}}{\delta_{A}+\delta_{B}}$ will be continuous on X provided $\delta_{A}+\delta_{B} \neq 0$ on X. But, if there exists some $x \in X$ where $\delta_{A}(x)+\delta_{B}(x)=0$ then $\delta_{A}(x)=\delta_{B}(x)=0$ since both of the δ functions are nonnegative. Thus, by 18 a), $x \in \bar{A}=A$ and $x \in \bar{B}=B$. But this means A and B are not disjoint, contradicting our assumption that they are. Therefore, $\delta_{A}+\delta_{B}>0$ on X which implies f is continuous on X.

To show the range property of f, note $\delta_{A} \geq 0$ and $\delta_{A}+\delta_{B}>0$ on X which implies $f \geq 0$ on X. Also, if $x \in X$

$$
0 \leq f(x)=\frac{\delta_{A}(x)}{\delta_{A}(x)+\delta_{B}(x)} \leq \frac{\delta_{A}(x)+\delta_{B}(x)}{\delta_{A}(x)+\delta_{B}(x)}=1
$$

using the fact that δ_{B} is a nonnegative function on X.
(b) Show $f(x)=0$ iff $x \in A$ and $f(x)=1$ iff $x \in B$.

Note $f(x)=0$ iff $\delta_{A}(x)=0$ iff $x \in \bar{A}=A$. Also, $f(x)=1$ iff $\delta_{A}(x)=\delta_{A}(x)+\delta_{B}(x)$ iff $\delta_{B}(x)=0$ iff $x \in \bar{B}=B$.
(c) Show that every closed set A in X is the zero set for some continuous function.

If $A=\emptyset$, then choose the function identically 1 on all of X. If $A \neq \emptyset$, then pick δ_{A}, which vanishes identically on $\bar{A}=A$.
(d) Show that there exist disjoint open sets U and V where $A \subseteq U$ and $B \subseteq V$.

Let f be defined by

$$
f(x)=\frac{\delta_{A}(x)}{\delta_{A}(x)+\delta_{B}(x)}
$$

on X. Let $\hat{U}=\left[0, \frac{1}{2}\right)$ and $\hat{V}=\left(\frac{1}{2}, 1\right]$ which are open in $[0,1]$. Thus, $U=f^{-1}(\hat{U})$ and $V=f^{-1}(\hat{V})$ are open in X by the continuity of f. Also, $A=f^{-1}(\{0\}) \subseteq f^{-1}\left(\left[0, \frac{1}{2}\right)\right)=$ $f^{-1}(\hat{U})=U$ and $B=f^{-1}(\{1\}) \subseteq f^{-1}\left(\left(\frac{1}{2}, 1\right]\right)=f^{-1}(\hat{V})=V$. Finally, because f is a function, U and V are disjoint.
20. Suppose $f, g: X \rightarrow Y$ are continuous mappings between metric spaces and E is a dense subspace of X.
a) Prove $f(E)$ is dense in $f(X)$.

We must show $\overline{f(E)}=f(X)$. Since f is continuous, we know $f(\bar{E}) \subseteq \overline{f(E)}$. So $f(\bar{E})=f(X) \subseteq \overline{f(E)}$. And $f(E) \subseteq f(X)$ implies $\overline{f(E)} \subseteq \overline{f(X)}=f(X)$ since $f(X)$ is closed in $f(X)$. So $\overline{f(E)}=f(X)$ and hence $f(E)$ is dense in $f(X)$.
b) Prove if $f(x)=g(x)$ for all x in E, then $f(x)=g(x)$ for all x in X.

Let $y \in X-E$. We know $y \in \bar{E}$ since $y \in X$. Suppose $f(y) \neq g(y)$. Let $d=$ $d(f(y), g(y))$. So $B\left(f(y), \frac{d}{3}\right) \cap B\left(g(y), \frac{d}{3}\right)=\emptyset$. Let $g\left(x_{n}\right)=f\left(x_{n}\right)$ be sequences such that $x_{n} \in E$ and $d\left(y, x_{n}\right)<\frac{1}{n}$. We know these sequences exist since we know $f(x)=$ $g(x) \forall x \in E$ and $y \in \bar{E}$. Since f is continuous, $f\left(x_{n}\right) \rightarrow f(y)$. So there exists some $N_{1} \in \mathbb{N}$ such that $f\left(x_{n}\right) \in B\left(f(y), \frac{d}{3}\right) \forall n>N_{1}$. Likewise, there is some $N_{2} \in \mathbb{N}$ such that $g\left(x_{n}\right) \in B\left(g(y), \frac{d}{3}\right) \forall n>N_{2}$. Choose m such that $m>N_{1}$ and $m>N_{2}$. Then $f\left(x_{m}\right) \in B\left(f(y), \frac{d}{3}\right)$ and $g\left(x_{m}\right)=f\left(x_{m}\right) \in B\left(g(y), \frac{d}{3}\right)$. So $f\left(x_{m}\right) \in B\left(f(y), \frac{d}{3}\right) \cap$ $B\left(g(y), \frac{d}{3}\right)$. This is a contradiction, so $f(y)=g(y)$ must hold $\forall y \in X$.
21. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is one-to-one and satisfies $d(x, y)=1$ implies that $d(f(x), f(y))=$ 1. Show that $d(x, y)=d\left(f(x), f(y)\right.$ for all $x, y \in \mathbb{R}^{2}$.

Proof. Fix any point $x \in \mathbb{R}^{2}$ and any point $y_{0} \in \mathbb{R}^{2}$ such that $d\left(x, y_{0}\right)=1$. Then define points y_{i} for $i=1,2,3,4,5$ by rotating along the circle of radius 1 centered at x by $\pi i / 3$ radians from y_{0}. Since all of the triangles formed by the segments connecting the y_{i} and x are equilateral, the y_{i} are all separated by a distance of 1 unit from y_{i+1} and y_{i-1} (where the subscript addition is mod 6).
Since $d(a, b)=1$ implies that $d(f(a), f(b))=1$, the circle of radius 1 centered at x must map into the circle of radius 1 centered at $f(x)$. In particular, all of the $f\left(y_{i}\right)$ must lie on this circle. Once the location of $f\left(y_{0}\right)$ is fixed on this circle, there are only two points a distance one away from $f\left(y_{0}\right)$ that are still on the circle (each point $\pi / 3$ radians away from y_{0}). Since $d\left(y_{0}, y_{1}\right)=1, y_{1}$ must map to one of these two points, and this then determines where each of the remaining y_{i} must map.

Consider the perpendicular bisector of y_{i} and y_{i+1}. There are exactly two points on the perpendicular bisector that are a distance of 1 unit away from y_{i} and y_{i+1}. One of these points is x, call the other point z. Then $f(z)$ must be one of the two points that is exactly 1 unit away from $f\left(y_{i}\right)$ and $f\left(y_{i+1}\right)$. One of these points is $f(x)$, and since f is one-to-one the other point must be $f(z)$. Continuing in this manner we see that f must map any equilateral triangular lattice of points separated by 1 unit onto a congruent equilateral triangular lattice of points separated by 1 unit, and that this map is determined by the image of three adjacent points (i.e. any one triangle) of the lattice.

Now consider any point p on the circle of radius 1 centered at x such that $p \neq y_{0}$. Let θ be the angle from y_{0} to p, measured in the direction of y_{1}. We want to show that $f(p)$ must be the point on the circle of radius 1 centered at $f(x)$ such that the angle from $f\left(y_{0}\right)$ to $f(p)$ measured in the direction of $f\left(y_{1}\right)$ is θ. If we can show this, then we will know that $d\left(y_{0}, p\right)=d\left(f\left(y_{0}\right), f(p)\right)$. Since x was chosen arbitrarily, y_{0} was chosen arbitrarily on the circle of radius 1 centered at x, and p was chosen arbitrarily among points on this circle not equal to y_{0}, we would know that for all points a, b such that $d(a, b)<2, d(a, b)=d(f(a), f(b))$. To show that $d(a, b)=d(f(a), f(b))$ for the case when $d(a, b)=r \geq 2$, we can repeat the above lattice creation process on a circle
of radius $r /\lfloor r\rfloor$. Because of the arbitrary choice of x and y_{0}, the lattice procedure shows that $d(a, b)=d(f(a), f(b))$ whenever $d(a, b)$ is an integer multiple of the original circle's radius.
Before we prove our claim about $f(p)$, note that for any two points a, b such that $d(a, b) \leq 2$, we can find a point c such that $d(a, c)=d(b, c)=1$. Then $d(f(a), f(c))=$ $d(f(b), f(c))=1$, so by the triangle inequality $d(f(a), f(b)) \leq 2$.
We know that $f(p)$ must be on the circle of radius 1 centered at $f(x)$. Assume that the angle from $f\left(y_{0}\right)$ to $f(p)$ measured in the direction of $f\left(y_{1}\right)$ is NOT θ. We know that the equilateral triangular lattice of points separated by 1 unit of which p and x are a part must be mapped onto a congruent equilateral triangular lattice of points separated by 1 unit. In particular, each point on the ray $\overrightarrow{x p}$ that is a distance $r \in \mathbb{Z}_{>0}$ from x must be mapped to the point on the ray $\overrightarrow{f(x) f(p)}$ a distance r from $f(x)$. So assume that the angle from $f\left(y_{0}\right)$ to $f(p)$ measured in the direction of $f\left(y_{1}\right)$ is $\alpha \neq \theta$. Let $\beta=|\alpha-\theta|$. Consider the point on $\overrightarrow{x p}$ a distance $r=\left\lceil\frac{2}{|\sin (\beta / 2)|}\right\rceil$ from x. Call this point a. Let $f(q)$ be the point such that the angle from $f\left(y_{0}\right)$ to $f(q)$ in the direction of $f\left(y_{1}\right)$ is θ, and the distance from $f(q)$ to $f(x)$ is r. Let b be any point on the equilateral triangular lattice of points separated by 1 unit determined by x and y_{0} such that $d(a, b)<2$. Then $f(a)$ must be the point on $\overrightarrow{f(x) f(p)}$ a distance r from $f(x)$, which means that $f(a)$ has been rotated by an angle β about $f(x)$ relative to the image of the equilateral triangular lattice determined by $f(x)$ and $f\left(y_{0}\right)$. This corresponds to a shift of distance $2 r \sin (\beta / 2) \geq 4$ for the point $f(a)$ from the point $f(q)$, which by the triangle inequality implies that $d(f(a), f(b))>2$. But this contradicts our above claim that any pair of points less than or equal to two units apart must map to a pair of points less than or equal to two units apart. Therefore $f(p)$ must be the point on the circle of radius 1 centered at $f(x)$ such that the angle from $f\left(y_{0}\right)$ to $f(p)$ measured in the direction of $f\left(y_{1}\right)$ is θ, completing our proof.

