Lecture Notes for Analysis Class

Topological Spaces

A topologyfor a seiX is a collectiony of subsets oK such that:

(a) X and the empty set are jn

(b) Unions of elements df are ing.

(c) Finite intersections of elements&dfare ing.
A set for which a topology has been specified lkedaatopological space A
topological space is often denoted by the p&is) whenever the specified topology is
relevant. The sets in the topology are calledofhen sets A setE is calledclosedif
E°is open. Notice thaX and the empty set are always both open and closed.

Examples

(a) For any seK the set of all subsets ®fis a topology. It is called thdiscrete
topology The collection {{}, X} is also a topology for any s&t It is called the
trivial topology.

(b) Let g be the collection of subsdikof X such thalX — Uis either finite or all of
X. Thend is a topology and it is called tfiaite compliment topologylo see that
g is indeed a topology we need only to check the itmmd of the definition.
Clearly,X and the empty set arehsinceX — Xis empty (therefore, finite) and
—{}is X. If U, OJ thenX -U,is finite. Since the intersection of finite sets i

finite, X -UU, =N(X -U,)is finite. ThusUU, 0 J. If U, 0 J fori =1,
2,...,nthen X —-U;is finite. Since a finite union of finite sets isife,
X -NU; =U(X -U,)is finite. ThusNU, O J.

(c) LetX={a,b,c} andg ={ X {}, {a},{b,c}} . ThenJ is a topology. Note that
{a} and{b,c} are both open and closed.

(d) Let (X, 9) be a topological space aNMe a subset of. The collection
{YnU |UDO g}is atopology ory. ltis called thesubspace topology

Exercises
(1) Check examples (c) and (d).
(2) Is it possible for a set to be open in the subspapalogy but not open in the
space?

Definitions
(a) A basisfor a topology orX is a collectior8 of subsets ofX such that:
(1) For eachxd X, there is at least origin B containingx.
(2) If xOB, n B, (B,,B, UMB) then there is &8, 0 RB such
thatx 0B, 0 B, n B,.
(b) The sets in a basis are callegbkis elements



(c) A setU is open in theopology generated b if for eachx in U there is a basis
elementB containingx such thaB O U .

(d) Supposer; andg, are topologies on the same setfit! J,, we say thal, is
finer thang'; and that7, is coarserthang,. Note the direction of containment;
the finer topology contains more open sets tharctiagser topology. 5, [1 5,
andJ1# J,, we say thaff, is strictly finer thang’; and that7; is strictly coarser
thang,.

(e) A space idHausdorffif for each pair of pointg andy in the space there are
disjoint open seté andB that contairx andy, respectively.

Examples

(a) SupposeX, 9) and Y, 9°) are topological spaces. L$t={U xV |U O J and
VO 9’} Then®B is a basis for a topology oaxY . Indeed, every point is
in X xY which is itself a basis element and the interseatif two basis elements
is another basis elemert), xV,) n U, xV,)=U, nU,)x(V, nV,)). The
product topologynX xY is the topology generated 8

(b) SupposeB; and$B, are bases foiX( 9) and [, 37), respectively. ThefB =
{B,xB, | B, U %, and B, [J B} is a basis for the product topology ¥rxY .

(c) Thestandard topologpnR is the one generated by the b§ssb)|a<b . The
standard topologyn R is the product topology aftandard topologyn R with
itself. From (b) we see thta,b)x(c,d)|a<b,c<d iga basis for the standard
topology onR?.

(d) Any simply ordered set can be given tinder topology It is the topology
generated by the badiéa,b)|a<b} O{[ a,,b) | a, is the smallest element (if it
exists)} U{(a,b,]|b, is the largest element (if it exists)}. GRithe standard
topology is the order topology since there is ngdat or smallest element. The

positive integerZ, is an ordered set with a smallest element. Therdapology
onZ, is the discrete topology.

Theorems
(a) Let B, and$B, be bases for topologies andd,, respectively. The following are
equivalent:
@)y J2is finer thang.
@) For each elementand each basis elemdhin 38, containingx, there is a
basis elemeri'in 3B, such thak O B'[] B.

(b) Suppose that is a collection of open sets in a topological gpasuch that for
each open séf and eachkx in U there is & in € such thax OC OU . Then€Cis
a basis for the topology of

Exercises
(3) Show that the collectiof from example (b) is a basis.



(4) Show that the collectiof( a,b) x (c,d) |a <b,c <dand a,b,c,dare rational}is a
basis for the standard topology Bh
(5) Show that the collectioff a,b)|a<b i$ a basis oR.

(6) Show that the topology generated by the basis &rencise (5) is strictly finer
than the standard topology.

(7) Let B be a basis. Show that the topology generateg bguals the collection of
all unions of elements fros.

(8) Show that every simply ordered set is Hausdorthanorder topology. Find an
example of a non-Hausdorff space.

(9) Find examples that show that an infinite intersecbf open sets may be closed
and that an infinite union of closed sets may benop

A function f : X - Y between topological spaces is caléashtinuousf for each open

subseD of Y, the setf (O )s an open subset & We will see that this notion of
continuity agrees with the usual notion of contip@itom calculus.

Theorem
Let f: X - Ybe afunction between topological spaces. Theffiall@ving are
equivalent:

(a) f is continuous;

(b) f(E) O f(E) for every subseE of X;

(c) f*(C) is closed inX whenevelC is closed ir.

Theorem (construction of continuous functions)
Let X, Y andZ be topological spaces.
(a) The constant functiorf (x) = y, Y is continuous.
(b) If Xis a subspace &fthen the inclusion mag (x) = xJY is continuous.
(c)If f:X - Yandg:Y - Zare continuous thego f : X - Zis continuous.
(d) If f:X - Y iscontinuous and is a subspace of then the restricted function
f|A: A - Y iscontinuous.
(e)If f:X - Y iscontinuous then a function obtained frbhy restricting or
expanding the range is continuous.
() The mapf : X - Y is continuous iX can be written aUa E, where eactE,

is open andf | E, is continuous for eaah.
(g) The mapf : X - Y is continuous if for eackx 1 X and each neighborhoddof
f(x) there is a neighborhodd of x such that (U) OV . This is calleccontinuous

at x.
(h) Let X = A B, whereA andB are closed; leff : A - Yandg:B - Ybe

continuous functions such thdt(x) = g(x foy allx(J An B. Then the function
h: X - Ydefined byh(x) = f (x Jor x(OA andh(x) = g(x Jfor x(OBis
continuous.



(i) Let f:A - XxYDbe given by the equatidn(a) = (f,(a), f,(a)). Thenfis
continuous iff f, : A -~ Xand f, : A - Y are continuous.

Definitions
(a) A bijective function f : X - Y is called ehomeomorphisnf it and its inverse
are continuous.
(b) A mapping f : X - Y is called anmbeddingif its restriction f : X - f(X Js a
homeomorphism.
(c) An open covenf a subseE of X is a collection of open sef&, fjom X such

thatE O( J E, .

(d) A setK is compactf every open cover admits a finite subcover. Mexelicitly,
if {E,} is any open cover of a compact Kethen there is a finite number of sets
E,.....E from{E,} suchthaE O E O...0E,.

(e) Two disjoint nonempty open subsét&ndB of X are aseparationof X
if Al B= X. Ifthere is no separation ¥fthen it is callecconnected

() Theinterior of a sefA is the largest open set contained\irit is denoted byA° or
Int (A).

(9) Theclosureof a setA is the smallest closed set that cont#ing is denoted b.

(h) A pointx is alimit point of a setA if every open set containingintersectsA at
some point other thax The set of all limit points of A is denoted BY.

(i) A neighborhoodf x is any set that contains an open set contaixing

() A sequence &,} of pointsconvergeso a point if for every neighborhood of

X there is a positive integ®r such thatx, U for all i >N. If {x,} does not
converge, idiverges o
(k) The boundary of a sétisAn A°. It is denoted by BdX).

Exercises

(10) Show that(X, x X, x...x X, )% X, is homeomorphic t&X, x X, x...x X, .

(11) Show that the interior oA is the union of all open subsetsfAfShow that the
closure ofA is the intersection of all closed sets contairng

(12) Show thatA= A0 A".

(13) Show that a séi is closed iffA = A and that A is closed i [0 A.

(14) Show thatA® and Bd A) are disjoint and tha = A° (1 Bd (A).

(15) If pis a limit point ofE (in a Hausdorff space) then every neighborhoog of
contains infinitely many points &.

(16) A finite point set in a Hausdorff space has notipaints.

(17) Show that if there is a sequence of points flgonverging to thenx is a
limit point of A.



Theorems (connectedness)
(a) Xis connected iff the only sets that are both cgh closed are the empty set and
Xitself.
(b) Another formulation of a separation Xfis a pair of nonempty sefsandB such

that ADUB=X and An B and An B are empty.

(c) SupposeY is a connected subspacexof If A andB form a separation of thenY
is entirely in eitheA or B.

(d) The union of a collection of connected sets wigfoant in common is connected.

(e) Let A be connected. IA 1 B [J A thenB is also connected.
() The image of a connected set under a continuoussramnected.

(9) If X; is connected for= 1,...n then the producf | X, is connected.

(h) A subsetE of the real line is connected iff it has the fellag property: If
X, YOE andx<z<y,thenzOE.

() (Intermediate Value Theorem) LEt X — Y be a continuous map of a connected

spaceX into an ordered spadé(with the order topology). K andb are two
points ofX andr is a point ofY lying betweerf(a) andf(b) then there is a poirmt
in X such thaf(c) =r.

Theorems (compactness)

(a) Every closed subset of a compact set is compact

(b) If K is a compact set in a Hausdorff spacexaizdnot inK then there exist disjoint
open sets A and B such thi&t[] A andx[B.

(c) Every compact subset of a Hausdorff space is closed

(d) The image of a compact space under a continuoussampact.

(e) SupposeX is compact and is Hausdorff. If f : X - Y is a continuous bijection
thenf is a homeomorphism.

() The product of finitely many compact spaces is cachp

(g) Let X be a space with the order topology and the lggs¢muubound property. Each
closed interval irX is compact.

(h) Let X be a nonempty compact Hausdorff space. If evemytpd X is a limit point
of X thenX is uncountable.

Metric Spaces

A setX s called ametric spacef for any two pointg andq of X there is an associated
numberd(p,q), called the distance fromto g, such that

(@) d(p,g) =0;

(b)d(p,g) =0iffp=q;

(c)d(p,q) =d (a.p);

(d)d(p,q) < d(p,r) +d(r,q) for anyr in X.
Any function with these properties is callediatance functioror ametric.



Definitions
(@) The setB, (x,£) ={y|d(x,y) <€ Js called theopen ballof radiuss centered at
X. Similarly, the seC, (x,&) ={y|d(x,y) < € s called theclosed ballof radius

& centered at. When no confusion will arise the metdavill be omitted from
the notation.

(b) A setSis boundedf for every pair of pointx andy in Sthere is a finite number
M such thatl(x,y) < M . A bounded set hasddameterthat is defined to be the

least upper bound of the sed{x, y)| %,y S}.

(c) Let f,: X = Y be a sequence of functions from a’s¢b a metric spacé. We
say { f,} converges uniformlyo f : X - Yif given £ > O there is an integeM
such thatd(f,(x), f (X)) <& for alln > N and allx in X.

Examples

(a) The usual distance functiaifp,q) = [>_(p, —q,)?]"* (also called the Euclidean
i=1

metric) turnsR" into a metric space.
(b) Another metric on the Euclidean spaces is gived(pyy) = max{|pi — q| fori =
1,...n}. This called the square metric.
(c) Let X be any set and(p,q) be 1 ifp # g (and, of course, 0 f=q). Thendis a
metric (called the discrete metric) akds a metric space.
(d) Any subsety of a metric spacX is a metric space using the same distance function

If X has a metrid defined on it then the metric determines a toppltlge metric
topology) onX. The collection of all open balls is a basis. Tasis generates the metric
topology onX. All metric spaces are Hausdorff. Different metnnay generate the same

topology.

Example
We show the Euclidean and square metricRbgenerate the same topology.

Letd and o denote the Euclidean and square metrics, respbctives easy to see that
o(xy)<d(x,y) < \/ﬁd(x, y) holds for any pointg andy. The first inequality shows that
B, (x,€) O B;(x, &) and so the Euclidean metric topology is finer th@square metric

topology. The second inequality shows t@(x,glx/ﬁ) 0 B, (%, &) and so the square
metric topology is finer than then Euclidean metogology. Thus they are equivalent.
The topology generated by both of these metritisdssame as the product topology on
R

Exercises
(1) Show that the square metric topology is equivaienhe product topology oR".



(2) If dis a metric, show thai(x, y) = min{d(x, y),1} is also a metric (called the

standard bounded metrassociated td). Show that all sets are bounded uﬁng
(3) Show that in a Hausdorff space a convergent seguanst converge to only one
point.

Example
We show that the calculus and topological notidnsoatinuity agree on the real line.

Supposef : R - Ris continuous in the sense that giver th@re is ad > Gsuch that
| f ()= f (%) <& whenevejx—x,|<J. LetO be open ang, 0 f (O .)Sincef is
continuousx being withind of x,insures thatf (x s within £ of f(x,). Chooses
such thaf f (x) T (x) = f (x,)] <&} 0 O. Then(x, +3,%, —3) 0 f (O ). Thus f *(O )is
open.

Now suppose thaf : R - Ris continuous in the sense that' (O is ppen wheneved
is open. Then D =(f(x,)—&, f(x,)+& ) f *(O)is open. Thusf *(O ¢ontains an
open ball of some radiud > ¢ntered at,. Sincgx, —J,%,+J) 0 f *(O),

X = %,| < dimplies thatf (x) = f (x,)[ < €.

Theorems
(a) Let X andY be metric spaces with metridg anddy, respectively. The continuity
of f: X = Y is equivalent to the requirement that giweands > O, there is a

d >0 such thatd, (x,y) <d=d,(f(x), f(y) <e.

(b) If X'is a metric space thex A iff there is a sequence of pointsArthat
converges to.

(c) SupposeXis a metric space. A functioh: X - Y is continuous iffx, — X in
Ximplies thatf(x,) - f(x )nY.

(d) (Uniform Limit Theorem) If {f_} is a sequence of continuous functions (from a
topological space into a metric space) that coresrmiformly tof thenf is

continuous.
(e) A subset oR" is compact iff it is closed and bounded in thelEiean or square
metric.

Definitions
(a) A spaceX islimit point compacif every infinite subset oX has a limit point.
(b) A spaceX is sequentially compadt every sequence in X has a convergent
subsequence.
(c) Afunction f : X - Y between metric spacesusiformly continuousf

giveng > 0, there is & > Gsuch that for any two poingsandb of X,
d,(a,b)<d=4d,(f(a), f(b)<e.



Theorems

(a) If Eis an infinite subset of a compact BethenE has a limit point irK (i.e.,
compactness> limit point compactness).

(b) Limit point compactness implies sequential compagsrin a metric space.

(c) Letd be an open cover of a sequentially compact mgpaceX. There is a
0 >0 such that for each subsetXhaving diameter less thahthere is an
element ofd containing it.

(d) (Uniform Continuity Theorem) Lef : X — Y be a continuous map from a
compact metric space to a metric space. Thesuniformly continuous.

(e) In a metric spac¥, compactness, limit point compactness, and seglient
compactness are equivalent.

Definitions
(a) A sequence,} of points in a metric space(d) is said to be &auchy sequence

if givene > 0, there is an integé\ such thatd(x,, x,) <& whenevemn,m> N .

(b) A metric space isompletef every Cauchy sequence in the space convergas to
point in the space.

Exercises
(4) Is every convergent sequence a Cauchy sequence?
(5) Is a closed set of a complete space complete®,(ihsvhat metric?)

(6) If a space is complete undgris it complete unded(x, y) = min{d(x, y)1} ?

Theorems
(a) A metric spaceX is complete iff every Cauchy sequenc&ihas a convergent
subsequence.
(b) Euclidean spacR" is complete in the Euclidean and square metrics.

Let (Y, d) be a metric space artl be the standard bounded metric associateld The
collection of all functions from some s¢into Y (denotedy™) can be turned into a metric

space. The formulﬁ(f,g) = Iub{a(f(x),g(x)) | xO X} defines thauniform metric,z

on Y* corresponding td. If X is a topological space then we may consider tHeatimn
€ (X,Y) of all continuous functions frold into Y.

Theorems
(a) If (Y,d) is complete thenY(" ,,7)) is complete.
(b) Under the uniform metric@ (X,Y) is closed inY*. Thus, if Y,d) is complete then
(€ (X,Y),p) is complete.
(c) There exists a continuous surjectiif0,1] — [0,1]%.



Baire Spaces

A spaceX is said to be 8aire spacef given any countable collectiorC{} of closed sets
in X each having empty interior thénC_ also has empty interior. This definition may
also be formulated in terms of open sets: A spaisesaid to be 8aire spacef given
any countable collection,} of open sets X each being dense ¥then\U is also
dense inX.

Exercises
(1) Show that these two definitions are equivalent.
(2) Show that every non-empty open set in a Baire spaoet the countable union of
closed sets having empty interiors.

The following statement is known &be Baire Category Theorem
Every non-empty complete metric space is a Bgnacs.

This is a very important theorem in Analysis. Isf@anumber of consequences such as
the Principle of Uniform Boundedness, the Open Mag heorem, the Closed Graph
Theorem, the Inverse Mapping Theorem, and theengst of a continuous nowhere
differentiable function.

A subset¥ of € (X,R) is said to beiniformly bounde@n a subsat of X if there is a
positive integeM such thatf(x)| <M for all x in U and for allf in . Note: ¥ being
bounded inpo(f,g) = Iuff| f(x)—g(x)|:xO X}is equivalent t&F being uniformly
bounded orX.

Theorems
(a) (Principle of Uniform Boundedness) Létbe a complete metric space @hbe a
subset of?2 (X,R) such that for eackin X the set#x = {f(X) |f in ¥} is bounded.
Then there is a nonempty opendah X on which# is uniformly bounded.
(b) Let h:[0,1] —» R be a continuous function. Given> tBere is a continuous
nowhere differentiable functiog[0,1] - R such that h(x) —g(x) | <& for all x.

A set that can be written as a countable interseaif open sets is called@; set.

Examples

(1) Every singleton £} in R"is a G, since {}= ﬁ B(x1/n).
n=1

(2) Let f : R —» Rbe an arbitrary function. The sét, consisting of points at whidh
is continuous is &; . To see this le€, be the collection of all open sefssuch
that the diameter dfU) is less than b/ SetU, to be the union of all sets @}, .
ThenU, is open and\ = ﬂUn . To see this equality we show double



containment. Ifx[J Athen for every neighborhood = (f (x) —¢, f(X) +&¢ of
f (X) there is a neighborhoo@ = (x—-90,x+Jd o) x such thatf (O) OV . We

show thakOU ,OOn. Givenn, pick V = (f(x)— (4n)™, f(X)+ (4n)™). ThenCa
neighborhoodD;, of x such thatf (O,) OV = diameter(f (O,)) < (2n)™ <1/n.
Thus xOO, OU_ On. (On the other hand) IXDﬂUn thenOnthere exists a
neighborhood, of x such that diameterf((O,)) <1/n. Given a neighborhood
V=(f(x)—¢, f(X)+¢&)of f(X), pick n>1/g. Then diameterf(O,)) <¢.
Thus f(O,) OV = xOA.

Is there a functionf : R » Rthat is continuous precisely @h(the rationals)? No,
becaus&) is not aG;. To see this suppos@is aG,,i.e.,,Q= ﬂan with eachw,

open. IfV, =R~-{q}(for qin Q) then the collectiof = { Wi} LI {V, }is a countable

collection of dense open sets. Then, by the Baategory Theorem, the intersectién
of all sets il is also dense. Kis inAthenxis in W, for eachn andV, for eachq. But

this impliesx is both in and not iQ. ThusA is empty and we have a contradiction.

Is there a functionf : R — Rthat is continuous precisely on the irrational€3.Y(See
problem 16 from the metric space homework.) Thashthat the irrationals are@,; .

Exercises
(3) The Baire Category Theorem implies that R cannatiiiégen as the countable
union of closed sets having empty interiors. Shioat this fails if the sets are not
required to be closed.
(4) Show that the rationals are not Baire.
(5) Show that every open subset of a Baire space &ra Bpace.



