
Lecture Notes for Analysis Class 
 
 
Topological Spaces 
 
A topology for a set X is a collection T of subsets of X such that: 

(a) X and the empty set are in T. 
(b) Unions of elements of T are in T. 
(c) Finite intersections of elements of T are in T. 

A set for which a topology has been specified is called a topological space.  A 
topological space is often denoted by the pair (X, T) whenever the specified topology is 
relevant. The sets in the topology are called the open sets.  A set E is called closed if 

cE is open. Notice that X and the empty set are always both open and closed. 
 
Examples 

(a) For any set X the set of all subsets of X is a topology. It is called the discrete 
topology. The collection {{}, X} is also a topology for any set X. It is called the 
trivial topology. 

(b) Let T be the collection of subsets U of X such that X – U is either finite or all of 
X. Then T is a topology and it is called the finite compliment topology. To see that 
T is indeed a topology we need only to check the conditions of the definition. 
Clearly, X and the empty set are in T since X – X is empty (therefore, finite) and X 
– {} is X.  If ∈αU  T then αUX − is finite.  Since the intersection of finite sets is 

finite, )( αα UXUX −=− ∩∪ is finite. Thus ∈αU∪  T.  If  ∈iU  T for i = 1, 

2,…, n then iUX − is finite. Since a finite union of finite sets is finite, 

)( ii UXUX −=− ∪∩ is finite. Thus ∈iU∩  T.  

(c) Let X = },,{ cba and T = }},{},{{},,{ cbaX . Then T is a topology.  Note that 
}{a and },{ cb  are both open and closed.  

(d) Let (X, T) be a topological space and Y be a subset of X.  The collection 
∈∩ UUY |{  T} is a topology on Y.  It is called the subspace topology. 

 
Exercises 

(1) Check examples (c) and (d). 
(2) Is it possible for a set to be open in the subspace topology but not open in the 

space? 
 

Definitions 
(a) A basis for a topology on X is a collection B of subsets of  X such that: 

(1) For each Xx∈ , there is at least one B in B containing x. 
(2) If 21 BBx ∩∈  ( ∈21,BB B) then there is a ∈3B B such 

that 213 BBBx ∩⊂∈ . 

(b) The sets in a basis are called basis elements. 



(c) A set U is open in the topology generated by B if for each x in U there is a basis 
element B containing x such that UB ⊂ . 

(d) Suppose T1 and T2 are topologies on the same set. If T1⊂  T2, we say that T2 is 
finer than T1 and that T1 is coarser than T2.  Note the direction of containment; 
the finer topology contains more open sets than the coarser topology. If T1⊂  T2 
and T1≠  T2, we say that T2 is strictly finer than T1 and that T1 is strictly coarser 
than T2. 

(e) A space is Hausdorff if for each pair of points x and y in the space there are 
disjoint open sets A and B that contain x and y, respectively. 

 
Examples 

(a) Suppose (X, T) and (Y, T’) are topological spaces. Let B = ∈× UVU |{  T and 
∈V  T’}.  Then B is a basis for a topology on YX × . Indeed, every point is 

in YX ×  which is itself a basis element and the intersection of two basis elements 
is another basis element ( )()()()( 21212211 VVUUVUVU ∩×∩=×∩× ).  The 
product topology on YX ×  is the topology generated by B.  

(b) Suppose B1 and B2 are bases for (X, T) and (Y, T’), respectively. Then B = 
∈× 121 |{ BBB  B1 and ∈2B  B2} is a basis for the product topology on YX × . 

(c) The standard topology on R is the one generated by the basis }|),{( baba < . The 
standard topology on R2 is the product topology of standard topology on R with 
itself. From (b) we see that },|),(),{( dcbadcba <<× is a basis for the standard 
topology on R2. 

(d) Any simply ordered set can be given the order topology. It is the topology 
generated by the basis 00 |),{[}|),{( abababa ∪<  is the smallest element (if it 

exists)} 00 |],{( bba∪  is the largest element (if it exists)}. On R the standard 

topology is the order topology since there is no largest or smallest element. The 
positive integers Z+ is an ordered set with a smallest element. The order topology 
on Z+ is the discrete topology. 

 
Theorems  

(a) Let B1 and B2 be bases for topologies T1 and T2, respectively. The following are 
equivalent: 

(1) T2 is finer than T1. 

(2) For each element x and each basis element B in B1 containing x, there is a 
basis element 'B in B2 such that BBx ⊂∈ ' . 

 
(b) Suppose that C is a collection of open sets in a topological space X such that for 

each open set U and each x in U there is a C in C such that UCx ⊂∈ .  Then C is 
a basis for the topology on X. 

 
 
Exercises 

(3) Show that the collection B from example (b) is a basis. 



(4) Show that the collection dcbadcba <<× ,|),(),{( and a,b,c,d are rational}is a 
basis for the standard topology on R2.  

(5) Show that the collection }|),{[ baba < is a basis on R. 
(6) Show that the topology generated by the basis from exercise (5) is strictly finer 

than the standard topology. 
(7) Let B be a basis. Show that the topology generated by B equals the collection of 

all unions of elements from B. 
(8) Show that every simply ordered set is Hausdorff in the order topology. Find an 

example of a non-Hausdorff space. 
(9) Find examples that show that an infinite intersection of open sets may be closed 

and that an infinite union of closed sets may be open. 
 

A function YXf →: between topological spaces is called continuous if for each open 

subset O of Y, the set )(1 Of − is an open subset of X.  We will see that this notion of 
continuity agrees with the usual notion of continuity from calculus. 
 
Theorem 
Let YXf →: be a function between topological spaces. Then the following are 
equivalent: 

(a) f  is continuous; 

(b) )()( EfEf ⊂  for every subset E of X;  

(c) )(1 Cf −  is closed in X whenever C is closed in Y. 
 
Theorem (construction of continuous functions) 
Let X, Y and Z be topological spaces.  

(a) The constant function Yyxf ∈= 0)(  is continuous. 

(b) If X is a subspace of Y then the inclusion map Yxxf ∈=)(  is continuous. 
(c) If YXf →: and ZYg →: are continuous then ZXfg →:� is continuous. 
(d) If YXf →:  is continuous and A is a subspace of X then the restricted function 

YAAf →:|  is continuous. 
(e) If YXf →:  is continuous then a function obtained from f by restricting or 

expanding the range is continuous. 
(f) The map YXf →:  is continuous if X can be written as ∪α αE  where each αE  

is open and αEf | is continuous for eachα . 

(g) The map YXf →:  is continuous if for each Xx∈ and each neighborhood V of 
f(x) there is a neighborhood U of x such that VUf ⊂)( . This is called continuous 
at x. 

(h) Let BAX ∪= , where A and B are closed; let YAf →: and YBg →: be 
continuous functions such that )()( xgxf = for all BAx ∩∈ . Then the function 

YXh →: defined by )()( xfxh = for Ax∈  and )()( xgxh = for Bx∈ is 
continuous. 



(i) Let YXAf ×→: be given by the equation ))(),(()( 21 afafaf = .  Then f is 

continuous iff XAf →:1 and YAf →:2 are continuous. 
 
Definitions 

(a) A bijective function YXf →:  is called a homeomorphism if it and its inverse 
are continuous. 

(b) A mapping YXf →:  is called an imbedding if its restriction )(: XfXf → is a 
homeomorphism. 

(c) An open cover of a subset E of X is a collection of open sets }{ αE  from X such 

that ∪α αEE ⊂ . 

(d) A set K is compact if every open cover admits a finite subcover. More explicitly, 
if }{ αE  is any open cover of a compact set K then there is a finite number of sets 

kEE ,...,1  from }{ αE  such that kEEE ∪∪⊂ ...1 .  

(e) Two disjoint nonempty open subsets A and B of X are a separation of X 
if XBA =∪ .  If there is no separation of X then it is called connected.  

(f) The interior of a set A is the largest open set contained in A. It is denoted by oA  or 
Int (A). 

(g) The closure of a set A is the smallest closed set that contains A. It is denoted byA . 
(h) A point x is a limit point of a set A if every open set containing x intersects A at 

some point other than x. The set of all limit points of A is denoted byA′ .  
(i) A neighborhood of x is any set that contains an open set containing x. 
(j) A sequence { nx } of points converges to a point x if for every neighborhood U of 

x there is a positive integer N such that Uxi ∈ for all i > N.  If { xn} does not 

converge, it diverges. 

(k) The boundary of a set A is cAA∩ . It is denoted by Bd (A). 
 
Exercises 

(10) Show that nn XXXX ×××× − )...( 121 is homeomorphic to nXXX ××× ...21 . 

(11) Show that the interior of A is the union of all open subsets of A. Show that the 
closure of A is the intersection of all closed sets containing A. 

(12) Show that AAA ′∪= . 
(13) Show that a set A is closed iff AA =  and that A is closed iff AA ⊂′ . 

(14) Show that Ao and Bd (A) are disjoint and that ∪= oAA Bd (A). 
(15) If p is a limit point of E (in a Hausdorff space) then every neighborhood of p 

contains infinitely many points of E. 
(16) A finite point set in a Hausdorff space has no limit points. 
(17) Show that if there is a sequence of points from A converging to x then x is a 

limit point of A. 
 
 
 
 



Theorems (connectedness) 
(a) X is connected iff the only sets that are both open and closed are the empty set and 

X itself. 
(b) Another formulation of a separation of X is a pair of nonempty sets A and B such 

that XBA =∪  and BA∩  and BA∩  are empty.  
(c) Suppose Y is a connected subspace of X.  If A and B form a separation of X then Y 

is entirely in either A or B. 
(d) The union of a collection of connected sets with a point in common is connected. 

(e) Let A be connected. If ABA ⊂⊂  then B is also connected. 
(f) The image of a connected set under a continuous map is connected. 

(g) If Xi is connected for i = 1,…,n then the product ∏
=

n

i
iX

1

is connected. 

(h) A subset E of the real line is connected iff it has the following property: If 
Eyx ∈,  and yzx << , then Ez∈ . 

(i) (Intermediate Value Theorem) Let YXf →:  be a continuous map of a connected 
space X into an ordered space Y (with the order topology).  If a and b are two 
points of X and r is a point of Y lying between f(a) and f(b) then there is a point c 
in X such that f(c) = r. 

 
 
Theorems (compactness) 

(a) Every closed subset of a compact set is compact. 
(b) If K is a compact set in a Hausdorff space and x is not in K then there exist disjoint 

open sets A and B such that AK ⊂  and Bx∈ . 
(c) Every compact subset of a Hausdorff space is closed. 
(d) The image of a compact space under a continuous map is compact. 
(e) Suppose X is compact and Y is Hausdorff. If YXf →:  is a continuous bijection 

then f is a homeomorphism. 
(f) The product of finitely many compact spaces is compact. 
(g) Let X be a space with the order topology and the least upper bound property. Each 

closed interval in X is compact. 
(h) Let X be a nonempty compact Hausdorff space. If every point of X is a limit point 

of X then X is uncountable. 
 
 
 
Metric Spaces 
 
A set X is called a metric space if for any two points p and q of X there is an associated 
number d(p,q), called the distance from p to q, such that  
 (a) d(p,q) ≥ 0; 
 (b) d(p,q) = 0 iff p = q; 
 (c) d(p,q) = d (q,p); 
 (d) d(p,q) ≤  d(p,r) + d(r,q) for any r in X. 
Any function with these properties is called a distance function or a metric. 



 
Definitions 

(a) The set }),(|{),( εε <= yxdyxBd is called the open ball of radiusε  centered at 

x. Similarly, the set }),(|{),( εε ≤= yxdyxCd is called the closed ball of radius 

ε  centered at x. When no confusion will arise the metric d will be omitted from 
the notation. 

(b) A set S is bounded if for every pair of points x and y in S there is a finite number 
M such that Myxd ≤),( . A bounded set has a diameter that is defined to be the 
least upper bound of the set { Syxyxd ∈,|),( }. 

(c) Let YXfn →: be a sequence of functions from a set X to a metric space Y.  We 

say { nf } converges uniformly to YXf →: if given 0>ε  there is an integer N 

such that ε<))(),(( xfxfd n  for all n >  N and all x in X.  

 
Examples 

(a) The usual distance function d(p,q) = 2/1

1

2 ])([∑
=

−
n

i
ii qp (also called the Euclidean 

metric) turns Rn  into a metric space. 
(b) Another metric on the Euclidean spaces is given by d(p,q) = max{| pi – qi| for i = 

1,…,n}.  This called the square metric. 
(c) Let X be any set and d(p,q) be 1 if p ≠  q (and, of course, 0 if p = q). Then d is a 

metric (called the discrete metric) and X is a metric space. 
(d) Any subset Y of a metric space X is a metric space using the same distance function.  

 
If X has a metric d defined on it then the metric determines a topology (the metric 
topology) on X. The collection of all open balls is a basis. This basis generates the metric 
topology on X. All metric spaces are Hausdorff. Different metrics may generate the same 
topology.  
 
Example  
We show the Euclidean and square metrics on Rn generate the same topology.  
 
Let d and δ denote the Euclidean and square metrics, respectively. It is easy to see that 

),(),(),( yxnyxdyx δδ ≤≤ holds for any points x and y.  The first inequality shows that 

),(),( εε δ xBxBd ⊂ and so the Euclidean metric topology is finer than the square metric 

topology. The second inequality shows that ),()/,( εεδ xBnxB d⊂ and so the square 

metric topology is finer than then Euclidean metric topology.  Thus they are equivalent. 
The topology generated by both of these metrics is the same as the product topology on 
Rn. 
 
Exercises 

(1) Show that the square metric topology is equivalent to the product topology on Rn. 



(2) If d is a metric, show that }1),,(min{),( yxdyxd = is also a metric (called the 

standard bounded metric associated to d). Show that all sets are bounded usingd . 
(3) Show that in a Hausdorff space a convergent sequence must converge to only one 

point. 
 
 
Example 
We show that the calculus and topological notions of continuity agree on the real line. 
 
Suppose RRf →: is continuous in the sense that given 0>ε  there is a 0>δ  such that 

ε<− )()( 0xfxf  whenever δ<− 0xx .  Let O be open and )(1
0 Ofx −∈ . Since f is 

continuous, x being within δ  of 0x insures that )(xf is within ε  of )( 0xf .  Choose ε  

such that{ } Oxfxfxf ⊂<− ε)()(:)( 0 . Then )(),( 1
00 Ofxx −⊂−+ δδ . Thus )(1 Of − is 

open. 
 
Now suppose that RRf →: is continuous in the sense that )(1 Of − is open whenever O 

is open.  Then if ))(,)(( 00 εε +−= xfxfO , )(1 Of − is open. Thus )(1 Of − contains an 

open ball of some radius 0>δ  centered at0x .  Since )(),( 1
00 Ofxx −⊂+− δδ , 

δ<− 0xx implies that ε<− )()( 0xfxf . 

 
Theorems 

(a) Let X and Y be metric spaces with metrics dX and dY, respectively. The continuity 
of YXf →:  is equivalent to the requirement that given x and 0>ε , there is a 

0>δ  such that εδ <⇒< ))(),((),( yfxfdyxd YX .   

(b) If X is a metric space then Ax∈  iff there is a sequence of points in A that 
converges to x. 

(c) Suppose X is a metric space.  A function YXf →:  is continuous iff xxn →  in 

X implies that )()( xfxf n → in Y. 

(d) (Uniform Limit Theorem) If { nf } is a sequence of continuous functions (from a 

topological space into a metric space) that converges uniformly tof then f is 
continuous. 

(e) A subset of Rn is compact iff it is closed and bounded in the Euclidean or square 
metric. 

 
Definitions 

(a) A space X is limit point compact if every infinite subset of X has a limit point.  
(b) A space X is sequentially compact if every sequence in X has a convergent 

subsequence. 
(c) A function YXf →:  between metric spaces is uniformly continuous if 

given 0>ε , there is a 0>δ  such that for any two points a and b of X, 
εδ <⇒< ))(),((),( bfafdbad YX .   



 
Theorems 

(a) If E is an infinite subset of a compact set K then E has a limit point in K (i.e., 
compactness ⇒  limit point compactness). 

(b) Limit point compactness implies sequential compactness in a metric space.  
(c) Let A be an open cover of a sequentially compact metric space X. There is a 

0>δ  such that for each subset of X having diameter less than δ there is an 
element of  A containing it. 

(d) (Uniform Continuity Theorem) Let YXf →: be a continuous map from a 
compact metric space to a metric space. Then  f  is uniformly continuous. 

(e) In a metric space X, compactness, limit point compactness, and sequential 
compactness are equivalent. 

 
Definitions 

(a) A sequence {xn} of points in a metric space (X, d) is said to be a Cauchy sequence 
if given 0>ε , there is an integer N such that ε<),( mn xxd  whenever Nmn >, . 

(b) A metric space is complete if every Cauchy sequence in the space converges to a 
point in the space. 

 
Exercises 

(4) Is every convergent sequence a Cauchy sequence? 
(5) Is a closed set of a complete space complete? (If so, in what metric?) 

(6) If a space is complete under d, is it complete under }1),,(min{),( yxdyxd = ? 
 
Theorems 

(a) A metric space X is complete iff every Cauchy sequence in X has a convergent 
subsequence. 

(b) Euclidean space Rn is complete in the Euclidean and square metrics. 
 

Let (Y, d) be a metric space and d  be the standard bounded metric associated to d. The 
collection of all functions from some set X into Y (denoted YX) can be turned into a metric 

space.  The formula }|))(),((lub{),( Xxxgxfdgf ∈=ρ  defines the uniform metric ρ  
on YX corresponding to d.  If X is a topological space then we may consider the collection 
C (X,Y) of all continuous functions from X into Y.   
 
Theorems 

(a) If (Y,d) is complete then (YX ,ρ ) is complete. 
(b) Under the uniform metric, C (X,Y) is closed in YX .  Thus, if (Y,d) is complete then 

(C (X,Y) ,ρ ) is complete. 
(c) There exists a continuous surjection  f: [0,1]→  [0,1]2. 

 
 
 
 



 
Baire Spaces 
 
A space X is said to be a Baire space if given any countable collection {Cn} of closed sets 
in X each having empty interior then nC∪ also has empty interior.  This definition may 

also be formulated in terms of open sets: A space X is said to be a Baire space if given 
any countable collection {Un} of open sets in X each being dense in X then nU∩ is also 

dense in X.   
 
Exercises 

(1) Show that these two definitions are equivalent. 
(2) Show that every non-empty open set in a Baire space is not the countable union of 

closed sets having empty interiors. 
 
The following statement is known as The Baire Category Theorem. 
 
 Every non-empty complete metric space is a Baire Space. 
 
This is a very important theorem in Analysis. It has a number of consequences such as 
the Principle of Uniform Boundedness, the Open Mapping Theorem, the Closed Graph 
Theorem, the Inverse Mapping Theorem, and the existence of a continuous nowhere 
differentiable function.  
 
A subset F of C (X,R) is said to be uniformly bounded on a subset U of X if there is a 
positive integer M such that |f(x)| < M for all x in U and for all f in F. Note: F being 
bounded in lub),( =gfρ }|:)()({| Xxxgxf ∈− is equivalent to F being uniformly 
bounded on X. 
 
Theorems 

(a) (Principle of Uniform Boundedness) Let X be a complete metric space and F be a 
subset of C (X,R) such that for each x in X the set Fx = {f(x) | f in F} is bounded. 
Then there is a nonempty open set U in X on which F is uniformly bounded. 

(b) Let h:[0,1] →R be a continuous function. Given 0>ε  there is a continuous 
nowhere differentiable function g:[0,1] →R such that | h(x) – g(x) | <ε  for all x. 

 
A set that can be written as a countable intersection of open sets is called a δG set. 

 
Examples 

(1) Every singleton {x} in Rn is a δG since {x}= ∩
∞

=1

)/1,(
n

nxB . 

(2) Let RRf →: be an arbitrary function. The set, A, consisting of points at which f 

is continuous is a δG . To see this let Cn be the collection of all open sets U such 

that the diameter of f(U) is less than 1/n. Set Un to be the union of all sets in Cn . 
Then Un is open and A = ∩ nU .  To see this equality we show double 



containment. If Ax∈ then for every neighborhood ))(,)(( εε +−= xfxfV  of 
)(xf there is a neighborhood ),( δδ +−= xxO of x such that VOf ⊂)( .  We 

show that nUx n∀∈ .  Given n, pick ))4()(,)4()(( 11 −− +−= nxfnxfV .  Then ∃ a 

neighborhood On of x such that VOf n ⊂)( ⇒diameter( nnOf n /1)2())( 1 << − . 

Thus nUOx nn ∀⊂∈ .  (On the other hand) If ∩ nUx∈ then n∀ there exists a 

neighborhood On of x such that diameter ( nOf n /1))( < .  Given a neighborhood 

))(,)(( εε +−= xfxfV of )(xf , pick ε/1>n .  Then diameter( ε<))( nOf .  

Thus VOf n ⊂)( ⇒  Ax∈ .  

 
Is there a function RRf →: that is continuous precisely on Q (the rationals)? No, 

because Q is not a δG .  To see this suppose Q is a δG , i.e., ∩n nWQ = with each Wn 

open.  If }{qRVq −= (for q in Q ) then the collection A = { Wn} ∪ { qV }is a countable 

collection of dense open sets.  Then, by the Baire Category Theorem, the intersection A 
of all sets in A is also dense.  If x is in A then x is in Wn for each n and qV for each q. But 

this implies x is both in and not in Q. Thus A is empty and we have a contradiction. 
 
Is there a function RRf →: that is continuous precisely on the irrationals? Yes. (See 

problem 16 from the metric space homework.) This shows that the irrationals are a δG . 

 
Exercises 

(3) The Baire Category Theorem implies that R cannot be written as the countable 
union of closed sets having empty interiors.  Show that this fails if the sets are not 
required to be closed. 

(4) Show that the rationals are not Baire. 
(5) Show that every open subset of a Baire space is a Baire space. 


