
Immerse Topology Homework
(Exercises 1-22)

Exercise 1. Prove DeMorgan’s Laws:

a. Show

(

⋃

α

Aα

)c

=
⋂

α
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α

Proof. Now, a ∈

(

⋃

α

Aα

)c

, if and only if a /∈
⋃

α

Aα, if and only if a /∈ Aα ∀α, if and

only if a ∈ Ac
α ∀α, if and only if a ∈

⋂

α

Ac
α.

b. Show

(

⋂

α

Aα

)c

=
⋃

α

Ac
α.

Proof. a ∈

(

⋂

α

Aα

)c

if and only if a /∈
⋂

α

Aα, if and only if a /∈ Aα for some α, if and

only if a ∈ Aα, for some α, if and only if a ∈
⋃

α

Ac
α.

Exercise 2. A. Let τc be the collection of all subsets U of X such that X − U is countable
or all of X. Show that τc is a topology on X.

Proof. X − ∅ = X, and X − X = ∅, which is countable. Thus, ∅ ∈ τc and X ∈ τc.

Suppose {Uα}α∈J is a family of open sets in τc. If Uα = ∅ for all α ∈ J then
⋃

α∈J

Uα = ∅.

So
⋃

α∈J

Uα is in τc. If there is some nonempty set in {Uα}α∈J , then X−
⋃

α∈J

Uα =
⋂

α∈J

(X−Uα),

which is at most countably infinite because at least one of the sets in X − Uα is countable.
So

⋃

α∈J

Uα is in τc.

Now suppose we have {U1, . . . Un}, a finite collection of open sets in τc. If Ui = ∅ for some

i 6 n then
n
⋂

i=1

Ui = ∅ which is in τc. If Ui 6= ∅ for all i 6 n, then X −
n
⋂

i=1

Ui =
n
⋃

i=1

(X − Ui).

This set is countable because it is the finite union of countable sets. Therefore
n
⋂

i=1

Ui is in τc.

B. Is the collection of all subsets U ⊆ X such that X − U is infinite, empty, or all of X
a topology? No.
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Proof. Consider R with this topology. Both (−∞, 2) and (2,∞) are open sets, as their
complements are infinite. However, (−∞, 2) ∪ (2,∞) = R − {2} is not an open set because
its complement is finite.

Exercise 3. Suppose {τi}i∈I is a collection of topologies on X.

a. Show that
⋂

i∈I

τi is a topology.

We know X and ∅ are in τi ∀i ∈ I. So X, ∅ ∈
⋂

i∈I

τi. Now let {Uα}α∈A be a collection

of sets in
⋂

i∈I

τi. Then ∀α ∈ A, we know Uα is in τi ∀i ∈ I. So
⋃

α∈A

Uα ∈ τi ∀i ∈ I

since each τi is a topology. Hence
⋃

α∈A

Uα ∈
⋂

i∈I

τi. Finally, let U, V ∈
⋂

i∈I

τi. Then

U, V ∈ τi ∀i ∈ I. So U ∩ V ∈ τi ∀i ∈ I since each τi is a topology. So U ∩ V ∈
⋂

i∈I

τi.

So finite intersections of elements of
⋂

i∈I

τi are in
⋂

i∈I

τi. Hence
⋂

i∈I

τi is a topology.

b. Find a counterexample to show that the union of a collection of topologies on X need
not a topology.

Let X = {a, b, c}, τ1 = {X, ∅, {a}, {b, c}} and τ2 = {X, ∅, {b}, {a, c}}.

Then
2

⋃

i=1

τi = {X, ∅, {a}, {b}, {b, c}, {a, c}}

But {b, c} ∩ {a, c} = {c} and {c} /∈
2

⋃

i=1

τi. So
2

⋃

i=1

τi is not a topology.

c. Suppose that τi are a collection of topologies on a space X. Show there is a unique
smallest topology containing all τi.

Proof. Consider the set B := {τ : τi ⊆ τ ∀i}. This set is non-empty as the discrete
topology contains all the τi. Let

S =
⋂

τ∈B

τ.

This is a topology as you have already shown in previous work. This topology is
contained in all topologies containing all the τi. Let τ be a topology containing all the
τi, then τ ∈ B. Therefore,

S ⊆ τ.
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To show that this topology is unique, suppose that there is another topology T with
the property that if τi ⊆ τ for all i, then T ⊆ τ . Now, τi ⊆ S for all i, and thus T ⊆ S.
But, τi ⊆ T , and so T ∈ B. Therefore, S ⊆ T .

So, we have that S is the unique smallest topology containing all the τi, as desired.

Exercise 4. Let X={a,b,c}, τ={X,∅,{a},{a,b}} and τ ′={X,∅,{a},{b,c}}.

A) Find the smallest topology containing τ and τ ′.

Solution: We know that both X, and ∅ must be in our topology. Since the union of the
elements of τ and τ ′ must also be in our topology, we know that {a}, {a, b} and {b, c} must be
in our topology. Since the intersection of the elements of τ and τ ′ must be in our topology, we
know that {b} must be in our topology as well. Therefore the smallest topology containing
τ and τ ′ is {X, ∅, {a}, {b}, {a, b}, {b, c}}.

B) Find the largest topology contained in τ and τ ′.

Solution: As in shown in problem 3c., the largest topology contained in τ and τ ′ is τ ∩ τ ′.
Thus, the largest topology contained in τ and τ ′ is {X, ∅, {a}}

Exercise 5. Let X be a topological space. Show the following conditions hold:

a. The empty set and X are closed.

Proof. X = ∅c is closed since ∅ is open and ∅ = Xc is closed since X is open.

b. Arbitrary intersections of closed sets are closed.

Proof. Let ∩α∈∆Aα be an arbitrary intersection of closed sets. Then (∩α∈∆Aα)c =
∪α∈∆Ac

α is an arbitrary union of open sets and hence open. ∴ ∩α∈∆Aα is closed.

c. Finite unions of closed sets are closed.

Proof. Let ∪n
i=1Ai be a finite union of closed sets. Then (∪n

i=1Ai)
c = ∩n

i=1A
c
i is a finite

intersection of open sets and hence open. ∴ ∪n
i=1Ai is closed.

Exercise 6. Show the following:

a. A ∪ B = A ∪ B

Proof. Now, A ∪ B is the smallest closed set containing A∪B. Also, A∪B is a closed
set containing A ∪ B. Therefore, we have that A ∪ B ⊆ A ∪ B.

Now, let x ∈ A ∪ B, then x ∈ A or x ∈ B. Suppose that x ∈ A; then for every open
set O containing x, we have that O ∩ A 6= ∅. It follows that O ∩ (A ∪ B) 6= ∅. Hence,
we have that for every open set O containing x, then O ∩ (A ∪ B) 6= ∅. Therefore
x ∈ A ∪ B. Similarly, if x ∈ B, then x ∈ A ∪ B

Therefore, A ∪ B = A ∪ B.
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b.
⋃

α Aα ⊃
⋃

Aα

Proof. Suppose that x ∈
⋃

α Aα. Then there is some α with x ∈ Aα. Thus every
open set O which contains x has O ∩ Aα 6= ∅. It follows that O ∩

⋃

α Aα 6= ∅. Thus,

x ∈
⋃

α Aα.

(Give an example where equality fails.)

Let Aα = ( 1

α
,∞). Thus, Aα = [ 1

α
,∞). Now, 0 /∈

⋃

α

Aα, but 0 ∈
⋃

α

Aα

Exercise 7. Let τ and τ ′ be two topologies on a set X and let i : (X, τ ′) → (X, τ) be the
identity map.

A) τ ′ is finer than τ ⇔ i is continuous.
B)τ ′ = τ ⇔ i is a homeomorphism.

Proof. A) First assume τ ′ is finer than τ . Let S be a set open in (X, τ). Then S is open
in (X, τ ′). Since i : (X, τ ′) → (X, τ) is the identity map, we have that i−1(S) = S. Then
i−1(S) is open in (X, τ ′). Therefore i is continuous.

Next, let i be continuous. Let O be an open set in τ . Then since i is continuous, i−1(O)
is open in (X, τ ′). Since i−1(O) = O, τ ′ is finer than τ .

Proof. B) Assume τ = τ ′. Then τ ′ is finer than τ . By part A, i is continuous. Since τ is also
finer than τ ′, i−1 is also continuous. It is clear that i is both one-to-one and onto. Then, i
is a homeomorphism.

Now, assume that i is a homeomorphism. Then i is continuous, so by part A, τ ′ is finer
than τ . i−1 is also continuous, so τ is finer than τ ′. Then, we must have τ = τ ′.

Exercise 8. Let τn be the topology on the real line generated by the usual bases plus {n}.
Show that (R, τ1) and (R, τ2) are homeomorphic, but that τ1 does not equal τ2.

PROOF. Consider the function f : R → R defined by f(x) = x + 1. To show f is injective
let x, y ∈ R and assume that f(x) = f(y). Then f(x) = f(y) ⇒ x + 1 = y + 1 ⇒ x = y. To
show that f is surjective let c ∈ R. Then choose a = c−1 ∈ R. Therefore f(a) = f(c−1) = c.

To prove that f is a homeomorphism we have to show that both f and f−1 are continuous.
Let U be a basic open set in τ2. Then either there exist a, b ∈ R such that U = (a, b), or
U = {2}.

Case 1. U = (a, b). Then f−1(U) = f−1((a, b)) = (a−1, b−1). Notice that (a−1, b−1)
is an open set in τ1.

Case 2. U = {2}. Then f−1(U) = f−1({2}) = {1}. Notice {1} is an open set in τ1.
Thus f is continuous function from R to R.

Similarly, let O be a basic open set in τ1. Then either there exist c, d ∈ R such that
O = (c, d), or O = {1}

4



Case 1.O = (c, d). Then f(O) = f((c, d)) = (c + 1, d + 1). Notice that (c + 1, d + 1) is
an open set in τ2.

Case 2. O = {1}. Then f(O) = f({1}) = {2}. Notice {2} is an open set in τ2.
Therefore f−1 is continuous from R to R Hence f is a homeomorphism.

The open set {1} is open in τ1, but not open in τ2; therefore, τ1 6= τ2.

Exercise 9. Build a function that is continuous at a single point.
Let f : R → R be defined by

f(x) =

{

x if x ∈ Q

−x if x /∈ Q

Let V be a neighborhood of f(0) = 0 in R. Write V = ∪α(aα, bα), as a union of
basis elements. Some (aα0

, bα0
) contains 0. Choose Ĉ = min{|aα0

|, bα0
}, which means

0∈ (−Ĉ, Ĉ) ⊆ (aα0
, bα0

). It follows that f((−Ĉ, Ĉ)) ⊆ (−Ĉ, Ĉ) ⊆ (aα0
, bα0

) ⊆ ∪α(aα, bα).
Since (−Ĉ, Ĉ) is a neighborhood of 0, by definition, we have that f is continuous at the
point 0.

We now show that f is not continuous at any non-zero point. Suppose x0 ∈ R is a non-
zero point. WLOG, assume x0 > 0. Then depending on whether x0 is rational or irrational,
its image is either positive or negative. So we can choose a neighborhood of its image, f(x0),
that does not contain the point 0. Call this neighborhood W . What is important is that
if we let U be an arbitrary neighborhood of x0, we can say U has an open interval about
x0 inside of it, say (a, b). So, we can choose a positive irrational number between x0 and b
which lies in (a, b), say y. Note f(y) < 0. Also, we can pick some rational number inside
of (a, b) between x0 and b (which is positive) and will have a positive image. Both of these
points will not lie in W . Hence f is not continuous at x0.

Exercise 10. Show that if X ⊆ Y ⊆ Z then the subspace topology on X as a subspace on
Y is the same as the subspace topology on X as a subspace of Z

Let (Y,TY ) and (Z,TZ) be topological spaces and let X ⊆ Y ⊆ Z. We want to show that
(X,T′

Y ) = (X,T′
Z) where T′

Y is the subspace topology of TY on X and T′
Z is the subspace

topology of TZ on X. Let U ∈ T′
Y . So U = UY ∩ X where UY ∈ TY . Since UY is open in Y ,

UY = UZ ∩Y , where UZ ∈ TZ So U = UY ∩X = UZ ∩Y ∩X. But Y ∩X = X, so U = UZ ∩X
and hence is in T′

Z . Thus T′
Y ⊆ T′

Z . Now let V ∈ T′
Z . So V = VZ ∩ X where VZ ∈ TZ . We

know VZ ∩Y = VY ∈ T′
Y . VY ∩X = VZ ∩Y ∩X. But Y ∩X = X, so VY ∩X = VZ ∩X = V .

Since VY ∩ X ∈ T′
Y we now know V ∈ T′

Y . Thus T′
Z ⊆ T′

Y so T′
Z = T′

Y .

Exercise 11. LetB = {(a, b) × (c, d) : a < b and c < d and a, b, c, d are rationals}. Show
that B is a basis for R2.

(1) Let (x, y) ∈ R2. Because the rationals are dense, there exists an ε1, ε
′
1, ε2, and ε′2 such

that x − ε1 ∈ Q, x + ε′1 ∈ Q, y − ε2 ∈ Q, and y + ε′2 ∈ Q. Let ax = x − ε1, bx = x + ε′1,
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cx = y − ε2, and dx = y + ε′2 and Bx = {(ax, bx)× (cx, dx)}. Then, (x, y) ∈ Bx ⊆ B. Because
of the density of Q, there will always be such a Bx for any (x, y) in R.

(2) Let (x, y) ∈ B1

⋂

B2 where (x, y) ∈ R and B1, B2 ∈ B such that B1 = {(a′, b′)×(c′, d′)}
and B2 = {(a′′, b′′) × (c′′, d′′)}. Set a = max(a′, a′′), b = min(b′, b′′), c = max(c′, c′′), and
d = min(d′, d′′). We can show that a < b and c < d. First, a′ < b′ and a′′ < b′′ is always true,
so if a = a′ and b = b′ or a = a′′ and b = b′′, then a < b follows. Since B1

⋂

B2 6= ∅, then
a′′ < b′ and likewise a′ < b′′. Therefore, if a = a′′ and b = b′ or a = a′ and b = b′′, it is still
true that a < b. The same logic can be used to show that c < d. Then B3 = {(a, b)× (c, d)}
is an element of B. Due to the definition of B3, (x, y) ∈ B3 ⊆ B1

⋂

B2.

Since B meets the two requirements of the definition of basis, B is a basis for R2. ¤

Exercise 12. Determine which of the following equations hold. If not, determine whether
any inclusion holds.
A) A ∩ B = A ∩ B
B)

⋂

Aα =
⋂

Aα

C) A − B = A − B
D) (A ∪ B)′ = A′ ∪ B′

E) (A ∩ B)′ = A′ ∩ B′

Solutions:

A) Claim: A ∩ B ⊆ A ∩ B only.
Proof: Let x ∈ A ∩ B = (A ∩ B) ∪ (A ∩ B)′

If x ∈ (A ∩ B) then x ∈ A ⊆ A and x ∈ B ⊆ B, so x ∈ A ∩ B
If x ∈ (A ∩ B)′ then ∀ U open sets such that x ∈ U , U ∩ (A ∩ B) \ {x} 6= ∅
Now, (A ∩ B) ⊆ A ⇒ (A ∩ B) \ {x} ⊆ A \ {x} ⇒ U ∩ (A ∩ B) \ {x} ⊆ U ∩ A \ {x}
⇒ U ∩ A \ {x} 6= ∅ ⇒ x ∈ A′ ⊆ A
And, (A ∩ B) ⊆ B ⇒ (A ∩ B) \ {x} ⊆ B \ {x} ⇒ U ∩ (A ∩ B) \ {x} ⊆ U ∩ B \ {x}
⇒ U ∩ B \ {x} 6= ∅ ⇒ x ∈ B′ ⊆ B so x ∈ A ∩ B
In either case then, x ∈ A ∩ B
∴ A ∩ B ⊆ A ∩ B ¤

Example where A ∩ B + A ∩ B
Let A = (0, 1) and B = (1, 2) then A ∩ B = ∅ ⇒ A ∩ B = ∅
But A = [0, 1] and B = [1, 2] so A ∩ B = {1}
Since ∅ + {1}, A ∩ B + A ∩ B

B) Claim:
⋂

Aα 6=
⋂

Aα.
(Note: α ∈ N)
Suppose that x ∈

⋂

Aα. Then either x ∈
⋂

Aα or x is a limit point of
⋂

Aα. If x ∈
⋂

Aα,
then x ∈ Aα for every α and, therefore x ∈ Aα for every oalpha. Thus x ∈

⋂

Aα. On
the ether hand, if x is a limit point of

⋂

Aα, then there is a sequence {xn} in
⋂

Aα which
converges to x. But then {xn} ⊆ Aα for each α. Thus x is a limit point of Aα for each α. It
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follows that x ∈
⋂

Aα.
Example where

⋂

Aα +
⋂

Aα

Let Aα = (α, α + 1)
Then

⋂

Aα = ∅ so
⋂

Aα = ∅
But Aα = [α, α + 1] so

⋂

Aα = {1, 2, 3, ...}
Since ∅ + {1, 2, 3, ...},

⋂

Aα +
⋂

Aα

C) Claim: A − B ⊇ A − B only.
Proof: Let x ∈ A − B So x ∈ A but x 6∈ B
So (x ∈ A or x ∈ A′) and (x 6∈ B and x 6∈ B′)
If x ∈ A then since x 6∈ B, x ∈ A − B which implies x ∈ A − B.
If, on the other hand, x ∈ A′, then every neighborhood of x intersected with A \ {x} is
nonempty.
And ∃V neighborhood of x such that V ∩ B = ∅
Let U be any neighborhood of x.
Assume U ∩ (A − B) = ∅; then, since U ∩ A 6= ∅, U ∩ (A ∩ B) 6= ∅.
But U ∩ V is a neighborhood of x such that (V ∩ U) ∩ A = ∅ →←
So U ∩ (A − B) 6= ∅ ⇒ x ∈ (A − B)′ ⊆ A − B
∴ A − B ⊇ A − B ¤

Example where A − B * A − B
Let A = (0, 2) and B = (1, 3). Then A − B = (0, 1] and A − B = [0, 1]
Now A = [0, 2] and B = [1, 3] So A − B = [0, 1)
Since [0, 1] * [0, 1), A − B * A − B

D) Claim: (A ∪ B)′ = A′ ∪ B′

Proof: First let x ∈ (A∪B)′. Then there is a sequence {xn} in A∪B which converges to x.
At least one of the sets A or B (WLOG assume that it is A) must contain infinitely many
terms of the sequence {xn}. Let {xni

} be a subsequence of {xn} with all its terms in A.
Since {xni

} converges to x, x ∈ A′. Thus, (A ∪ B)′ ⊆ A′ ∪ B′.
Now let x ∈ A′ ∪ B′ then x ∈ A′ or x ∈ B′.

If x ∈ A′ then ∀ U open sets such that x ∈ U , U ∩ A \ {x} 6= ∅
Now A ⊆ A ∪ B ⇒ A \ {x} ⊆ A ∪ B \ {x} ⇒ U ∩ A \ {x} ⊆ U ∩ (A ∪ B) \ {x}
⇒ U ∩ (A ∪ B) \ {x} 6= ∅ So x ∈ (A ∪ B)′

If x ∈ B′ then ∀ U open sets such that x ∈ U , U ∩ B \ {x} 6= ∅
Now B ⊆ A ∪ B ⇒ B \ {x} ⊆ A ∪ B \ {x} ⇒ U ∩ B \ {x} ⊆ U ∩ (A ∪ B) \ {x}
⇒ U ∩ (A ∪ B) \ {x} 6= ∅ So x ∈ (A ∪ B)′

In either case x ∈ (A ∪ B)′ so (A ∪ B)′ ⊇ A′ ∪ B′.
∴ (A ∪ B)′ = A′ ∪ B′ ¤

E) Claim: (A ∩ B)′ ⊆ A′ ∩ B′ only.
Proof: Let x ∈ (A ∩ B)′ then ∀ U open sets such that x ∈ U , U ∩ (A ∩ B) \ {x} 6= ∅

7



Now, (A ∩ B) ⊆ A ⇒ (A ∩ B) \ {x} ⊆ A \ {x} ⇒ U ∩ (A ∩ B) \ {x} ⊆ U ∩ A \ {x}
⇒ U ∩ A \ {x} 6= ∅ ⇒ x ∈ A′

And, (A ∩ B) ⊆ B ⇒ (A ∩ B) \ {x} ⊆ B \ {x} ⇒ U ∩ (A ∩ B) \ {x} ⊆ U ∩ B \ {x}
⇒ U ∩ B \ {x} 6= ∅ ⇒ x ∈ B′

So x ∈ A′ ∩ B′

∴ (A ∩ B)′ ⊆ A′ ∩ B′ ¤

Example where (A ∩ B)′ + A′ ∩ B′

Let A = (0, 1) and B = (1, 2) then A ∩ B = ∅ ⇒ (A ∩ B)′ = ∅
But A′ = [0, 1] and B′ = [1, 2] so A′ ∩ B′ = {1}
Since ∅ + {1}, (A ∩ B)′ + A′ ∩ B′

Exercise 13. If T1 is finer than T2, what does the connectedness of X in one topology imply
about the connectedness of X in the other?

If X is connected in T1, this implies that X is connected in T2. For if X is not connected
in T2, there exist nonempty open sets U and V in T2 such that X ⊆ (U ∪V ) and U ∩V = ∅.
But then U, V ∈ T1 so X is not connected in T1 either.

But inclusion does not hold the other way. For example, in the trivial topology on R,
every set is connected, but not every set is connected in the finer usual metric.

Exercise 14. Let An be a sequence of connected sets such that An intersects An+1 nontriv-

ially for each n. Show that
N
⋃

n=1

An is connected.

Proof. We proceed by induction on N . Base Case: N = 2

A1 ∩A2 6= ∅, so A1 ∪A2 is a union of connected sets with at least one point in common.

By ”connectedness theorem (d)”, it follows that
2
⋃

n=1

An is connected.

Inductive Step: Assume that
N−1
⋃

n=1

An is connected. We now want to show that
N
⋃

n=1

An is

connected.

AN−1 ⊆
N−1
⋃

n=1

An and AN−1 ∩ AN 6= ∅ by our assumption, therefore (
N−1
⋃

n=1

An) ∩ AN 6= ∅.

This implies that
N−1
⋃

n=1

An ∪ AN is connected.
N−1
⋃

n=1

An ∪ AN =
N
⋃

n=1

An, and we conclude

that
N
⋃

n=1

An is connected for every N.

Next, we would like to show that
∞
⋃

n=1

An is connected. We argue by contradiction. Assume

that
∞
⋃

n=1

An is not connected. Then there exist two nonempty sets, call them B1 and B2,
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such that B1 ∩ B2 = ∅ and B1 ∪ B2 =
∞
⋃

n=1

An (B1 and B2 form a separation on
∞
⋃

n=1

An). Let

us consider the location of A1. Since Ai is connected for each i = {1, ...n}, is must be the
case that Ai is completely in one of B1 or B2. Without loss of generality, let A1 ⊆ B1. Given

that B1 ∪ B2 is a non-trivial separation of
∞
⋃

n=1

An, there exists Aj ⊆ B2 for some collection

of j ∈ {1, 2, 3, ...} (it is possible that only a single Aj be in B2). Choose the smallest of

these j where Aj ⊆ B2. Call this Aj′ . Therefore we have B1 ⊇
j′−1
⋃

n=1

An and B2 ⊇ Aj. Then

Aj′−1 ⊆ B1, and since B1∩B2 = ∅, Aj′−1∩Aj′ = ∅. This is a contradiction, since we assumed

that An intersects An+1 nontrivially for each n. We conclude that
∞
⋃

n=1

An is connected.

Exercise 15. If X is an infinite set then it is connected in the finite complement topology.

Proof. (by contrapositive) Let X be a disconnected set in the finite complement topology,
τ = {U ⊆ X | X −U is either finite or X}. Since X is disconnected, there exist U1 ∈ τ and
U2 ∈ τ such that U1 6= ∅, U2 6= ∅, U1 ∪ U2 = X, and U1 ∩ U2 = ∅. Since U1 ∪ U2 = X and
U1 ∩ U2 = ∅, X − U1 = U2. We know that U1 6= ∅, so U2 = X − U1 6= X. Since U1 ∈ τ
and X − U1 6= X, X − U1 is finite. Therefore, U2 is finite. Similarly, U1 is also finite. Since
U1 ∪ U2 = X and the union of finite sets is finite, X must be finite.

Exercise 16. If T1 is finer than T2, what does the compactness of X in one topology imply
about the compactness of X in the other?

Let T1 be finer than T2. So T2 ⊆ T1.
Claim 1: If (X,T1) compact, then (X,T2) compact.
Let (X,T1) be compact and let {Uα} be an open cover of (X,T2). Then {Uα} is an open

cover of (X,T1). So ∃ U1, ..., Un, a finite open subcover of (X,T1). Since U1, ..., Un ∈ {Uα},
we know U1, ..., Un ∈ T2. So U1, ..., Un are a finite open subcover of (X,T2). Thus (X,T1)
compact implies (X,T2) compact.

Claim 2: (X,T2) compact does not necessarily mean (X,T1) compact.
Consider X = [0, 1],T2 = the usual topology on R, and T1 = P(X). T2 ⊆ T1 and (X,T2)

is compact. But {x} ∈ T1 for all x ∈ X, so S = {{x}|0 ≤ x ≤ 1} is an open cover of (X,T1)
with no finite subcover. Thus (X,T1) is not compact.

Exercise 17. Show the following:

(A) Bd(A) is empty iff A is both open and closed.

(⇒) Let Bd(A) be empty; then Bd(A) = A ∩Ac = ∅. Then we can replace the closure of A
and Ac with the unions of each set and its limit points giving us the following statement.

(i) Bd(A) = (A ∪ A′) ∩ (Ac ∪ (Ac)′) = ∅
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From (i) we can conclude that A∩ (Ac)′ = ∅, which means that the set (Ac)′ is contained in
Ac. Therefore Ac is closed and A is open. Also from (i) we can conclude that Ac ∩ A′ = ∅,
which means that A′ is contained in A. It follows that A is closed and Ac is open. Thus A
is both open and closed.

(⇐) Let A be open and closed; Then A = A and Ac = (Ac). This means that the boundary
of A is empty, since Bd(A) = A ∩ Ac = A ∩ Ac = ∅. Hence, A being both open and closed
implies that the Bd(A) = ∅.

(B) A is open iff Bd(A)= A − A.

(⇒)Let A be open. Then Ac is closed, so (Ac)′ is contained in Ac and Ac = Ac. Then
Bd(A) = A ∩ Ac = A ∩ Ac = A − A.

(⇐) Suppose A is not open. Then there exists an x ∈ A such that x is not an interior point
of A. Thus for every open set U containing x, U * A. Thus x is a limit point of Ac. It
follows that x ∈ A ∩ Ac = Bd(A). However, x /∈ A − A, so Bd(A) 6= A − A.

Exercise 18. For any subset of the real line (with the usual topology) there are at most 14
sets (including A) that can be formed by using complementation and closure. Prove this by
completing the following steps:

A. Show that if A is open then Ā = A−c−c−.

Proof.

•Claim: For any open set A, A ⊂ A−c−c.

Since A is open, Ac is closed. Since A ⊂ Ā, Ac ⊃ A−c.
A−c− is the smallest closed set containing A−c and Ac is a closed set containing
A−c, so A−c− ⊂ Ac.
Therefore A = (Ac)c ⊂ (A−c−)c = A−c−c.

⇒ Since we are given that A is open, by the above claim A ⊂ A−c−c. Then A−c−c− ⊃
A−c−c ⊃ A, so A−c−c− is an closed set containing A, which implies Ā ⊂ A−c−c−.
⇐ Proof by contrapositive. If x /∈ Ā, then x ∈ A−c. By the above claim, since A−c is
the complement of a closed set and therefore open, A−c ⊂ (A−c)−c−c. So x ∈ A−c−c−c,
which implies x /∈ A−c−c−.

B. Let

K = {A, Ā, A−c, A−c−, A−c−c, A−c−c−, A−c−c−c,

Ac, Ac−, Ac−c, Ac−c−, Ac−c−c, Ac−c−c−, Ac−c−c−c}.

Show that K is closed under complementation and closure.

Proof. We need to show that the complement and the closure of each element of K
is some other element of K. We demonstrate this in the chart below, using the fact
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that Acc = A, A−− = Ā since Ā is already closed, and by part (a) if A is open then
Ā = A−c−c−.

Element Closure Complement
A A− Ac

A− A−− = A− A−c

A−c A−c− A−cc = A−

A−c− A−c−− = A−c− A−c−c

A−c−c A−c−c− A−c−cc = A−c−

A−c−c− A−c−c−− = A−c−c− A−c−c−c

A−c−c−c A−c−c−c− = A−c− A−c−c−cc = A−c−c−

Ac Ac− Acc = A
Ac− Ac−− = Ac− Ac−c

Ac−c Ac−c− Ac−cc = Ac−

Ac−c− Ac−c−− = Ac−c− Ac−c−c

Ac−c−c Ac−c−c− Ac−c−cc = Ac−c−

Ac−c−c− Ac−c−c−− = Ac−c−c− Ac−c−c−c

Ac−c−c−c Ac−c−c−c− = Ac−c− Ac−c−c−cc = Ac−c−c−

Since K is closed under complementation and closure, we can get at most 14 sets
from any set in R using these two operations.

C. Show that there is a set A ⊂ R such that K has exactly 14 distinct elements.

Proof. Let A = ([0, 1] ∩ Q) ∪ [2, 3) ∪ (3, 4) ∪ {5}. Below I demonstrate the 14 distinct
sets formed from A by complementation and closure.
A = ([0, 1] ∩ Q) ∪ [2, 3) ∪ (3, 4) ∪ {5}
Ā = [0, 1] ∪ [2, 4] ∪ {5}
A−c = (−∞, 0) ∪ (1, 2) ∪ (4, 5) ∪ (5,∞)
A−c− = (−∞, 0] ∪ [1, 2] ∪ [4,∞)
A−c−c = (0, 1) ∪ (2, 4)
A−c−c− = [0, 1] ∪ [2, 4]
A−c−c−c = (−∞, 0) ∪ (1, 2) ∪ (4,∞)
Ac = (−∞, 0) ∪ ([0, 1] ∩ (R\Q)) ∪ (1, 2) ∪ {3} ∪ (4, 5) ∪ (5,∞)
Ac− = (−∞, 2] ∪ {3} ∪ [4,∞)
Ac−c = (2, 3) ∪ (3, 4)
Ac−c− = [2, 4]
Ac−c−c = (−∞, 2) ∪ (4,∞)
Ac−c−c− = (−∞, 2] ∪ [4,∞)
Ac−c−c−c = (2, 4)

Exercise 19. For any subset of the real line (with the usual topology) there are at most 7
sets (including A) that can be formed by using the interior and closure operations. Prove
this by completing the following steps:
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A. Show that Ao− = Ao−o− and A−o = A−o−o.

Proof. We prove both statements by double containment. To complete both proofs we
repeatedly use the facts that the interior of a set A is the largest open set contained
in A and the closure is the smallest closed set containing A. So if we know A ⊂ B,
this implies that Ao ⊆ Bo and Ā ⊆ B̄. Also, since Ao is open Aoo = Ao and since Ā is
closed A−− = Ā.
First we show Ao− = Ao−o−.

⊆ By definition of closure Ao ⊆ Ao−. Taking the interior of both sets gives Aoo =
Ao ⊆ Ao−o. Then taking closures of both sets gives Ao− ⊆ Ao−o−.
⊇ By definition of interior Ao−o ⊆ Ao−. Taking closures of both sides gives Ao−o− ⊆
Ao−− = Ao−.

Second we prove A−o = A−o−o.

⊆ By definition of closure A−o ⊂ A−o−. Taking the interior of both sets gives
A−oo = A−o ⊂ A−o−o.
⊇ By definition of interior A−o ⊂ A−. Taking closures of both sides gives A−o− ⊂
A−− = Ā. Taking the interior of both sides we get A−o−o ⊂ A−o.

B. Let K = {A, Ā, A−o, A−o−, Ao, Ao−, Ao−o}. Show that K is closed under the interior
and closure operations.

Proof. We need to show that the interior and the closure of each element of K is
some other element of K. We demonstrate this in the chart below, using the fact that
Aoo = Ao since Ao is already open, A−− = Ā since Ā is already closed, and the two
results from part (a).

Element Closure Interior
A A− Ao

A− A−− = A− A−o

A−o A−o− A−oo = A−o

A−o− A−o−− = A−o− A−o−o = A−o

Ao Ao− Aoo = Ao

Ao− Ao−− = Ao− Ao−o

Ao−o Ao−o− = Ao− Ao−oo = Ao−o

Since K is closed under the interior and closure operation, we can get at most 7
sets from any set in R using these two operations.

C. Show that there is a set A ⊂ R such that K has exactly 7 distinct elements.

Proof. Let A = ([0, 1] ∩ Q) ∪ [2, 3) ∪ (3, 4) ∪ {5}. Below I demonstrate the 7 distinct
sets formed from A by the interior and closure operations.
A = ([0, 1] ∩ Q) ∪ [2, 3) ∪ (3, 4) ∪ {5}
Ā = [0, 1] ∪ [2, 4] ∪ {5}

12



A−o = (0, 1) ∪ (2, 4)
A−o− = [0, 1] ∪ [2, 4]
Ao = (2, 3) ∪ (3, 4)
Ao− = [2, 4]
Ao−o = (2, 4)

Exercise 20. Show that the product of two Hausdorff spaces is Hausdorff.

Proof. Let X and Y be Hausdorff spaces, and consider two distinct points in X × Y , which
we’ll call p and q. We know we can write p = px×py and q = qx×qy for px, qx ∈ X, py, qy ∈ Y .
It cannot be the case that px = qx and py = qy because then p = q. Thus, suppose without
loss of generality that px 6= qx. Since X is Hausdorff, we know we can find open sets
Px, Qx ⊂ X such that px ∈ Px, qx ∈ Qx, and Px ∩ Qx = ∅. Additionally, we can find open
sets Py, Qy ⊂ Y such that py ∈ Py, qy ∈ Qy. Notice that Py ∩ Qy may be non-empty. We
can then let P = Px × Py, Q = Qx × Qy, so p ∈ P, q ∈ Q, and P ∩ Q = ∅. Since we have
separated two arbitrary points in X × Y with disjoint open sets, X × Y is Hausdorff, so the
product of two Hausdorff spaces is Hausdorff.

Exercise 21. Extreme Value Theorem Let X be compact and Y be ordered with the

order topology. Let f : X → Y be continuous. Show there exists a, b,∈ X such that f(a) ≤
f(x) ≤ f(b) for all x ∈ X.

Let Z = f(X). As Y is ordered, Z has a least upper bound in Y ; call it M . Choose c ∈ Z
with c < z for every z ∈ Z (if no such c exists, let c be the least element of Y ). Consider
the collection {Oy : y ∈ Z}, where Oy = (c, y) (or [c, y), if c is the least element of Y ).
Notice that for any z ∈ Z with z < M there exists some yz ∈ Z with z < yz, ; otherwise
z would be an upper bound for Z. So z ∈ (c, yz). If M 6∈ Z, the collection {Oy : y ∈ Z}
is an open cover for Z. Note that the union of any finite subcollection (c, y1), . . . (c, yn) is
(c, ymax), where ymax = max{y1, . . . , yn}. But ymax < M , and so, as argued above, there
is some w ∈ Z,w > ymax. Thus (c, ymax) 6= Z. That is, there is no finite subcollection of
{Oy : y ∈ Z} which covers Z. Therefore Z is not compact. However, Z is the continuous
image of a compact set, and is therefore compact. It follows that M ∈ Z, and so there is
some b ∈ X such that f(b) = M .

A similar argument shows that there is an a ∈ X such that f(a) is the least upper bound of
Z in Y .

Exercise 22. Show that X is compact if and only if every collection of closed sets with
the finite intersection property has non-empty intersection. A collection of sets has the
finite intersection property if and only if every finite sub-collection of sets has non-empty
intersection.

Proof: We’ll prove the contrapositive. X is not compact ⇐⇒ there exists a collection of
open sets {Uα}α∈Λ such that

⋃

α∈Λ
Uα = X but Uα1

∪ · · · ∪ Uαn
6= X for any α1, . . . , αn ∈ Λ

⇐⇒ there exists a collection of open sets {Uα}α∈Λ such that (
⋃

α∈Λ
Uα)c = ∅ but (Uα1

∪· · ·∪
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Uα1
)c 6= ∅ for any α1, . . . , αn ∈ Λ ⇐⇒ there exists a collection of closed sets {U c

α}α∈Λ such
that (

⋂

α∈Λ
U c

α) = ∅ but (U c
α1

∩ · · · ∩ U c
α1

) 6= ∅ for any α1, . . . , αn ∈ Λ ⇐⇒ there exists a
collection of closed sets with the finite intersection property which has empty intersection.
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